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A NOTE ON SPECTRAL CHARACTERIZATIONS
OF COSYMPLECTIC FOLIATIONS

JIN SUK PAK*, KwaN-Ho CHO, WON-HO SOHN AND JAE DON LEE

1. Introduction

Let (M, gp, F) be a (p+ g)-dimensional Riemannian manifold with a
foliation F of codimension ¢ and a bundle-like metric gj; with respect to
F ([9]). Aside from the Laplacian A, associated to the metric g, there is
another differential operator, the Jacobi operator Jp, which is a second
order elliptic operator acting on sections of the normal bundle. Its spec-
trum is discrete as a consequence of the compactness of M. The study
of the spectrum of A, acting on functions or forms has attracted a lot
of attention. In this point of view, the present authors [7] have studied
the spectrum of the Laplacian and the curvature of a compact orientable
cosymplectic manifold. On the other hand, S. Nishikawa, Ph. Tondeur
and L. Vanhecke [6] studied the spectral geometry for Riemannian folia-
tions. The purpose of the present paper is to study the relation between
two spectra and the transversal geometry of cosymplectic foliations.

We shall be in C*°-category. Manifolds are assumed to be connected.

2. Preliminaries

Let (M, g, F) be as above. Let V be the Levi-Civita connection with
respect to gas. Then the tangent bundle TM over M has an integrable
subbundle E which is given by F. The normal bundle Q of F is defined
by @ = TM/E. We have a splitting o of the exact sequence

0— E— TMQ — 0,
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where o(Q) is orthogonal complement bundle E+ of E in TM ([4]).
Then gps induces a metric gg on @ :

(2.1) 9q(s,t) = gu(a(s),o(?))

for any s,t € I'(Q), where I'(x) denotes the set of all sections of *.

In a flat chart U(z?, z%) with respect to F ([9]), a local frame {X;, X,}
= {8/0z',0/0z* — A7,8/0z’} is called the basic adapted frame to F
([9,10,11]). Here A7, are functions on U with gar(X;, X,) = 0. It is
clear that {X;} (resp. {X,}) spans I'(E|y) (resp. I'(E*|y)). From now
on, we omit “|y” for simplicity.

We set
9:ij = 9m(Xi, X;)s gab = gm(Xa, Xs),
(97 = (gi) 7" (8°°) = (gap) ™"

It follows from (2.1) and (2.2) that go(7(Xa), 7(Xs)) = gas-
A connection D in @ is defined by

(2.2)

([X,Y]), X e€I(E), se€l(Q)withn(Y)=s,

(2.8) Dxs = { T(VxYs), XeI(EY), sel(Q)withY,=o(s)

({4]). The connection D in @ is torsion free and metrical with respect
to go. The transversal curvature Rp of D is defined by

(2.4) Rp(X,Y)s =DxDys — DyDxs — Dixy)s

for any X,Y € I'(TM) and s € I'(Q). Since :(X)Rp = 0 for any X €
I'(E) ([4]), we can define the transversal Ricci operator pp : I'(Q) —
I'(Q) and the transversal scalar curvature op of D by

(2.5) pp(s) = g Rp(o(s), Xa)w(Xy), se€I(Q)
and
(2.6) op = g*°9q(pp(m(Xa), 7(X1))),

respectively ([5]).
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For a distinguished chart U C M the leaves of F in U are given as the
fibers of a Riemannian submersion f: U — V C N onto an open subset
V of a model Riemannian manifold N. Since dimE = p, dim@Q = ¢
and dimM = p+ ¢ = m, dimN = ¢. For overlapping charts U,NUpg
the corresponding local transition functions YaB = fao © fﬁ-] on N are
isometries. The transversal geometry is heuristically the geometry of
the model space N. Technically the corresponding transversal curvature
data are Rp,pp and op. F is said to be (transversally) Einstein if the
model space N is Einstein, that is pp = %aDoid with constant transver-
sal scalar curvature op, where ¢ = codimF. Similarly F is said to be
of constant (transversal) ¢-holomorphic sectional curvature if the model
space N is of constant ¢-holomorphic sectional curvature. In the sequel
we will mostly delete the adjective “transversal” in similar situations.
Furthermore, F is called a cosymplectic foliation if it is modeled on a
cosymplectic manifold.

For a Riemannian foliation F with metric g and canonical connection
D on @ the usual calculus for Q-valued forms on M applies. Let A =
dpdp be the Laplacian acting on sections of I'(Q)). Then the Jacob:
operator of a Riemannian foliation F is given by Jpv = (A — pp)v for
v € I'(Q) ([5]). With respect to the natural scalar product on I'(Q) it
1s strongly elliptic of the second order with leading symbol ¢. It has a
discrete spectrum with finite multiplicities.

Consider the case of a transversally oriented codimension ¢ = 1 fo-
liation F. Then the Ricci operator pp vanishes. Sections of Q can be
identified with functions on M, and it is easy to see that then an eigen-
function of the Jacobi operator on I'(Q) corresponds to an eigenfunction
of the ordinary Laplacian on M associated to the same eigenvalue. Thus
no new information is encoded in Spec(F, Jp). Throughout the rest of

the paper we assume therefore ¢ > 2.

Consider the semigroup e~*2s and the semigroup e ~t/» given by

e—tJD 'U«(l') = / I{(twfay) ']D) u(y) d VOl(y)7
M

where K(t,z,y,Jp) € Hom(Q,,Q.) is the kernel function. We have
asymptotic expansions for the corresponding L*-trace of e~ t®s and the
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L?-trace

Tr e t/p :/ tro, K(t,z,z,Jp) d Vol(z)
M

fort | 0:

o0

Tr e” P = Z ~ti £ 10 (4nt)~ Zt"an(A

=1

Tr e™ 4P = j{:e—’“ £]0 4wt)"'j£:t"b (Jp),

(2.7)

where
an(Dy) = / anlz, ) d Vol(z),
M

b.(Jp) = /M ba(z,Jp) d Vol(z)

are invariants of A, and Jp depending only on the discrete spectra
Spec(M,g) ={0< A <A <o <A <o Too}y
Spec(F,Jp)={pm Spa <--- <y < 1 oo}

We state the classical formulas for a,(4,) ([8]) (see also [1, 3]). Using
the local formulas for b,(z,Jp) given by Gilkey ([3, p. 327]) we also
obtain the b,(Jp). The curvature data associated to (M, g) are denoted
by Rar,pm,onm and in this paper we take the convention

Ru(X,Y)=Vixy; - [Vx,Vy]

for X,Y tangent vector fields on M. We have

LEMMA 2.1([6]). Let F be a smooth Riemannian foliation of codi-
mension q > 2 on (M, g) with volume form p = d Vol. Then

ag(Ag) = VolM,

1
(8= [ oun

1

02(8g) = 365

/ 21Rm|* = 2lpm|* + 5o a?)p
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and

bo(Jp) = q VolM,

h(Ip) =g ar(8)+ [ apn,
M
1
b2(JD) =4q ag(Ag) + '1—2/ [QUMO'D + 6|le2 - IRD|2]/‘
M
Note that [, oapp is the total scalar curvature of (M, g) and we call

fM opi the total scalar curvature of the foliation.

DEFINITION ([6]). The Riemannian foliations (M, g, F) and (Mo, go,
Fo) are said to be isospectral if
SpeC(M) g) = SpeC(M07 go:}a
Spec(F,Jp) = Spec(Fo, I, )-

From (2.7) and Lemma 2.1 we get the following results.

LEMMA 2.2([6]). Let (M,g,F) and (Mo, g0, Fo) be isospectral Rie-
mannian foliations. Then we have
1) dim M = dim]VIo y
2) Vol M = Vol M, ;
3) (M,g) and (Mg, go) have equal total scalar curvature ;
4) codimF =codimF*y, and hence F and F, have the same energy ;
5) F and F, have equal total scalar curvature ;
6) [y 2I1Ruml? —2lpm|® +50m 1 = [y [2|1Ruo|* — 2lone | + 501, 2o ;
7) Jul2omon +6lppl? = |Rp*lu = [y, [20 0,000 +6lpn, 1> — | R, [*]t0.

For 4) note that the energy E(F) = 1¢ Vol M ([4, p.116]).

3. Transversal geometry and cosymplectic foliations

Let (M, g, F) be a cosymplectic foliation of codimension 2¢ + 1 > 5.
A tensor field Hp on @ is defined by

Hp(w.9)z =Rp(e,9)z = 1 B 100(u, 2)2 - g(w,2)y
+ 90(8(y), 2)¢(z) — 9q(é(2), 2)8(y) — 29¢((x),y)d(z)

—np(y)np(z)z + go(z, 2)np(y)én
— 9@y, 2)np(z)ép + np(z)np(2)y},
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where z,y,z € I'(Q). Then we have

2 2

(3.1) |Hp|* = |Rp| —q(q+1)0D .

A cosymplectic foliation is of constant ¢-holomorphic sectional curvature
if and only if Hp = 0, provided ¢ > 2.
A tensor field Ep on @ is defined by

Ep(z) = {pp - 925(1 —np ® £p)}(2),

where z € I'(Q) and I denotes the identity transformation. Then we
have

(3.2) [Epl? = ppl? ~ 5-o0®
q
A cosymplectic foliation is said to be np-Einstein foliation if Ep = 0.
For any np-Einstein cosymplectic foliation, op is constant, provided
q 22
We also consider the so-called cosymplectic Bochner curvature tensor

field Bp associated to Rp on @ by(cf.[2])

Bp(z,y)z = Rp(z,y)z — {9q(pD(y), 2)z — gq(pp(2), 2)y

1
2(¢+2)
+ 90(y, 2)pp(z) — g9q(x,2)pp(y) + 9@(Sn(y), 2)é(z)

— 90(Sp(z), 2)8(y) + 9(8(y), 2)Sp(z) — 9(#(z), 2)Sn(Y)
—29q(¢(2),y)Sp(2) — 290(Sp(2),y)$(2)
~ g90(pp(y), 2)np(x)€D + 9o(pp(x), 2)np(Y)éD

— np(y)np(z)pp(z) + np(z)np(2)ep(y)}
oD

g2

+ np(z)np(2)y — 90y, 2)np(z)ép + 9z, 2)np(y)éD

+ 9q(8(y), 2)8(z) — 9@(é(z), 2)4(y) — 290(4(z),y)é(2)},

where Sp := ppo ¢ and z,y,z € I'(Q).

){gq(y, z)z — go(z,2)y — np(y)np(z)z
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A cosymplectic foliation with Bp = 0 is said to be cosymplectic
Bochner flat. We can easily see that

_ 2
3.3 Bnl? = |Rpl? = —— 2.2 G52
33) 1B =1Rof - Slol + o
and
(3.4) |Bp|* = |Hpl|* - _IEDl2

Thus from (3.4) we have the following

THEOREM 3.1. Let (M, g,F) be a cosymplectic foliation of codimen-
sion>5. Then (M, g, F) is of constant ¢-holomorphic sectional curvature
if and only if it is np-Einstein and cosymplectic Bochner flat.

THEOREM 3.2. Let (M,g,F) and (M, go, Fo) be isospectral cosym-
plectic np-Einstein foliations of codimension >5. Then (M, g,F) is of
constant ¢-holomorphic sectional curvature c if and only if (Mo, go, Fo)
is of constant ¢-holomorphic sectional curvature c

Proof. Since Ep = Ep, = 0, it follows from (3.2) that

1 1
2 _ 1 2 2 _ Y 2
(3.5) lppl* = 570 |pDs | IRALE
where op and op, are constant. Using Lemma 2.2 we obtain ¢ = ¢o and
op = 0p,. Thus from (3.5) we have

(3.6) leol* = |pp,

Since the total scalar curvatures are also equal, the equation 7) in Lemma

2.2 implies
[ 1RoPu= [ IRo,e
M Mo

with the help of (3.6), and consequently

%

2 2 21, _ 7 2 on. 2
61) [ 1Rof = ——=sontlu= [ (IRo,f* = —son o

M,
Taking account of (3.1), (3.7) reduces

/.HD|2#=] |H p, [0,
M Mo

which implies Theorem.
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THEOREM 3.3. Let (M, g,F) and (My, g9, Fo) be isospectral cosym-
plectic Bochner flat foliations of codimension >5 with constant scalar
curvature cp. Then (M, g, F) has constant ¢-holomorphic sectional cur-
vature c if and only if (My, go, Fo) has constant ¢-holomorphic sectional
curvature c.

Proof. From Lemma 2.2 we easily check that

[ R0 = 0lpnle = [ 1R, = 6loy o
M Mo
which implies

_ 2(3 2 3g+1
(3.8) / HBDV—M%F— e+l

q+2 g{g +1)
= [ 180 - LD g - S

by virtue of (3.2) and (3.3). Since Bp = Bp, = 0, (3.8) may be written

as

2(3¢ + 2) 2 2
(3.9) 12 (/M |Ep|“p ~ /MO |ED, | 10)

3¢+1 / 2 / 2
= ' o — o .
Q(Q+1)( Mo Do o M D#)

From now on assume that (Mo, go, Fo) is of constant ¢-holomorphic sec-
tional curvature c¢. Then (3.9) yields

o) ZLED [ pppu - 3qj:)(/ vt~ [ ovtn)

from which, together with the Cauchy-Schwarz inequality, we obtain

(3.11) VolM / opiup > (/ opp)t = (/ oD, o )?
M M M,

= VolM oD, o-
M,
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Thus it follows from (3.10) and (3.11) that

/ EplPu <0,
M

which implies Ep = 0. So, (M, g, F) is np-Einstein foliation and conse-
quently is of constant ¢-holomorphic sectional curvature c.

10.

11
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