'94 KACC (1994. 10. 17 ~ 20)

Nonlinear Control of A Double-Effect Evaporator
by Riemannian Geometric Approach

Yoshiaki Izawa and Kyojiro Hakomori

Departiment of Mechatoronics and Precision Engineering

Faculty of Engineering, Tolioku University
Aramaki Aoba, Aoba-ku, Sendai, 980-77, Japan

Abst : The purpose of this paper is Lo present the details of design
procedure of a nonlinear regnlator by Riemannian geometric approach and
to apply it to the case of a double-effect evaporator. A nonlinear geomet-
ric model is proposed on a direct sum space of a state vector and a control
veclor as well as in the previous papers by the authors. The geometric
model is derived by replacing the orthogonal straight coordinate axes of a
lincar systein on the direct sum space with the curvilinear coordinate axes.
The integral manifold of the geometric model becomes homeomorphic to
that of a fictitious linear system. For the gcometric model a nonlinear reg-
wlalor with a perforinance index is designed renewedly by the procedure of
optimization. The construction method of the curvilinear coordinate axes
on which the nonlinear system behaves as a linear system is discussed. To
apply the above regulator theory to double-effect evaporators especially
to the pilot plant at the Universily of Alberta, a suitable nonlinear model
is determined by the plant dynamics. The optimal control law is derived
through the calenlation of the homeomorphism. As a result it is confirmed
that the regnlator is eflective and superior to that of the conventional con-
trol.

1. Introduction

Most of the real plants have some nonlinearities such as construc-
tive nonlinearities, saturation in manipulation and so on. These real
plants are usually regarded as linear plants and control systeins are
designed for the linear plauts. However, the nonlinearities can not
be ignored to realize the more precise control, especially for the large
dynamic range.

The purpose of this paper is to present the details of design pro-
cedure of a nonlinear regulator by Riemannian geometric approach
and to apply it to the case of the double-eflect evaporator which had
been studied by Newell and Fisher [1],[(2].

The nonlinear regulator by Riemannian geometric approach is con-
structed based on the following idea: If the trajectorics of a linear
system is observed on a set of curvilinear coordinate axes instead
of the one of Lthe orthogonal straight axes, then the trajectories be-
have as a nonlinear system. Conversely, the trajectries of a nonlinear
syslem cau be treated as those of a linear system by using a suit-
able curvilinear coordinate axes [3]. In this paper the direct sum
of the state vector space and the control vector space is regarded
as a Riemanunian space. And the nonlincar regulator is derived by
replacing the orthogoual straight coordinate axcs of the above direcl
suin space to the curvilinear coordinate axes. Therefore, the integral
manifold of this nonlinear regulator is homeomorphic to that ol the
linear regulator. The basic properties of the linear regunlator are to
he reflected to the nonlinear regulator.

First, the nonlinear system model is derived in the direct sum
space by using the snitable curvilinear coordinate axes.

Nexl, il is discussed how to distort the curvilinear coordinate axes

fitted to the nonlinear system, and get a partial differential equation
with respect to the homeomorphism. A nonlinear regulator can be
designed with the solution of a Riccati equation for the fictitious
linear regulator and has the state feedback form.

The computational algorithm to realize the nonlinear regulator is
developed by using the characteristic equation of the partial differ-
ential equation.

A nonlinear controller for the double-effect evaporator has been
designed, which is a nonlinear system of three inputs and the fifth
order. As the result, the performance of the nonlinear control by
the Riemannian geometric method is proved to be superior to that

of the conventional control.

2. Riemannian geometric model

Consider a nonlinear system
& = a(z,u)z + bz, u)u. (1)
Let the following system (2) be a fictitious linear systetn which is
paired with the nonlinear system (1).
X = AX + BU (2

Where z, X are two n-dimensional vectors, and u,U are two r-
dimensional vectors, a(x, 1), A ate nx n matrixes, b(x,u), B are nxr
matrixes.

Let X', X be the vectors which span the above direct sumn space

- x - X
A= s A= . 3
u U &)

Then the equations (1) and (2) are described as
X =a(d) & *)
X=AZx, (5
respectively, where &(A.’) and A are

_ooy o oa(zou) b(xu) N
a(t) = ( 0 0 ) (6)
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Now the delinition of Lensor and its representation by the matrix are
given.
Let U and U* be an n-dimensional vector space and its dual space.

An (r,s)-lensor Fis defined as a multilinear map

I Frx oox Vi xVx..x Vi— R,
—_———— e

T s
where R is a set of nmmbers in which the addition and the product
are defined naturally.
Let U and U be two coordinate neighborhoods on an n-dimensional
L,y and (&1,...,3")

respectively. For cach x on U, let T (M) be a tangent space of M al x,

manifold M with the local coordinale (z!,...

then (#, RIS 0‘%) becomes a basis of T (M). 1If To(M) is selected
as V™, then the dual vector space V has a dual basis (da?, ..., de™).

Therefore an (r,s)-tensor F is redefined as

] ) .
Q@ —Rd2' @ - @dx?r,  (8)
dzie

where @ ia a tensor product, and r and s are a contravariant index
and a covariant index, respectivety. Changing the coordinate systein,

the componeits of a tensor I on U NU are transferred as

3 )
HEY dzir gt 3z

AT QEke Axdy | mir | A

Using the Einstein summation convenlion, the symbol ¥ is usually
omitted.
Definition 1: Since the tensor is a multilinear map, an (r.s)-teusor

in an n-dimensional space is expressed as an 07 x n* matrix whose
lir + nlry = D4 02(eg = )b 40" = 1),
A A A ) R A ¢ 1))

element is F’J?I

Using the above definitions, & Ricmannian geonetric wodel is de-
rived.  Let ,f’“, ./i’l‘, be two tensors on the curvilinear coordinale
system (), © = I,...,n+r, and B* A be the representations
of these tensors on the orthogonal straight coordinate system (&),
respectively. By the transformation formula of a tensor component,

we have

. it
v = =X 10
Y (10)
. QFM PP -
A = o A 11
v ox agv TP ()

According Lo the definition of the malrix representation of a tensor, a
conlravariant vector is expressad as a colmun vector, and (1,1)-tensor
T4 is expressed as a matrix with (p, 1) element T4 Therefore a

linear system (5) is represented as a tensor equalion

Pl o
;‘E.w' = An q (12)

Substituting (10) and (L1) into (12), we have

dXY R dat
Qi de | 0FIE di ©

(13)

agy
oFn

Multiplying into (13), we have

dIT 0 et dit
a T aEn 050 dl

v _ Y v A
X ~/17(, X7 (14)

Using the Chiristoflel symbols (14) becones

—— I i, O9ak O D n g 9
PR RN _ 90, _ 087 _a'xt 15
W= 50" e + 350 ~ o) = 55 S
then we have
dxv — di* - P .
T + {/37)\} 7 X7 = A—; X’ (1())

Theorem 1: The linear systemn (12) descrived on (he orthogonal
straight coordinate system ('), = I,...,n 4 r, is represented on
the curvilinear coordinate system () as the equation (16).

Proof: Proof is given as above.

Next, we consider the dual model of this Riemannian geometric

model (16), The dual model is derived from the transposed linear

model

Xt = XA 17
by representing on the curvilinear coordinale system in stead of the
orthogonal straight coordinate system.

Using the Riemannian metric tensor g, the covariant vector X,

is expressed by means of the contravariant vector X'”.

X, = gk’ (18)

From the definition of the matrix representation of a tensor, a co-
varinnt vector is expressed as a row vector. Therefore the equation

(17) is represented as the tensor equation

(Lf’,‘
dt

= 3,74, (19)

v . .
where ‘A’ is a tensor and have the following properties.

A o= & (20)

Theorem 2: The transposed linear system (19) described on
the orthogonal straight coordinate system (2'),i = 1,... ,n+r, is

represented on the curvilinear coordinate system (&) as

d¥, o dit = - —p
—E Xy ——{s7,} = VA .
e is el = A, (21)
Proof: By the transformation formmla of a tensor component, we

have

(22)

{23)

Wheun the coordinate system is changed, the Christoffel syinhols do

not behave as tensors and follow the relation

PO 923h

[ ——
{7 L
(a0 + QFAOFn’

(—.J?{/\";A) = 0r

(29)
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In the special case, on the orthogonal straight coordinate system the

Chiristollel symbols become {37, } = 0, therefore we have

9 aEt 0xr —
oA = 0} (25)
B2 ik~ OTr 9FH
Multiplying 3?_: into the equation (23) on the right side, we have
dY, o de 9% ezt 9E8 ., 93"
e Sl sy gty 2
@t o oge T Powr T H o (26)
Using (25), we have the equation (21) Q.E.D.

3. Homeomorphism

T this section, we consider the mapping between two integral mian-
ifolds of the Riemannian geometric model on the orthogonal straight
coordinale system and the curvilinear coordinate systeni. Let T and
7 be the coordinale neighborlioods on these integral manifolds, re-

spectively. Let 74, 7 be

v -

azv L, 0&"
Ty = 70— = .
L T

Theu we can consider the tranformation formula of a tensor compo-

nent

¥ -
o= ;?%,w, (27)
g a9y +
X, = FET, Xy (28)

as to be the mappings between XY € T and ¥ € I wilh respect
to 7 and 7. If r and T are both conlinuous mappings, then the
mapping 7 hecomes the honeomorphism between two integral man-
ifolds.

Substituting these = and 7 into (14) and (26), the Riemannian

geomelric model (16) and its dual model (21) become

dX dr#

= (7T —TI—L) ¥r ¢
dt (73 Tia ) (29)
d¥ S gy, dTE
dt’ = X(TEV A - ;u” ™). (30)

4. Nonlinear optimal regulator
Theorem 3: When the homeomorphisim r exists and is repre-

sented as

(=", (a0
T \Ta T2

then for the Ricmannain geotmetric model (16) and the perforimance

index

17 T i A By
J=o | RTIQLAA A (32)
ty

[

n T

(@) = :‘ <((‘)? 2) (33

we have the oplimal control law

u=—(rp+ Krp) M + Krpy)e (39)
K =R™'B'S. (35)

Where S is the solution of the Riccati equation

ds ¢ gt
2 L SA+A'S-SBR'B'S+Q=0. (36)

dt
S(T) =0 (37)

Proof: Since the Hamiltonian function 11 is a scalar function and
is invariant to the transformation of the coordinale system, the cal-
culus of variation Lo the control problem can be applicable to our
Riemannian geomctric approach. The proof is given by the proce-
dure of optimization in {4]. The anmiltonian II for the Riemannian

geometric model (16) with the cost J of (32) is

- dr®
H= (x TiQurh XY 4y (TIAT) - T) ”” xre, (38)

where ¥; is a costate covariant vector. The canonical equation is

derived as

djo _ OH _ oH
d T Toxe - Yam
1 uvu;] i AV i )/AA ]dr
= ——q,,,’f A7 — -—,t T,Qumh — ;[T AN TS — T}, , (39)
with the boundary condition
Ya(T) = 0. (40)
Supose that
Vo = B8 = KBTI, (a1)

n r
sy _nfS 0
(‘sﬂ) - r (0 0) ' (42)

then from (39) we have

dipe l
"ft g,J’Q; e - -,1 TiQ4
_ d
- BTSN A0 4 X’]"S‘;,(;t (43)

On the other hand, by diflerentiating (41) with ¢, and using the dual

mode} (30), we have

dy) P . d7}
(lla =4 {T'an':‘ - rlI," T?}T'Sl‘,‘ o
‘.ITUV;A ]ISM I ]udq
+ A5 7 —=SuTe + A 7] L +,I 758, 0
L _.dSY drh
=X ’T;'"‘.A S" "4 A’,-'T,’ ”' + A’ 'T-’S” T” (41)

Comparing (43} with (44), we have
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1 ,S‘m
0= S TIQAD 4 GTL Q)+ Sp A + AL, + S
_ ! T ou /l 1’] 1 m g‘m'ju 'C,{ n (ISTI' m
= SoinTL Qi + g0 T @ + Sp A+ TANS, 4+ e

i m e, dST
= 0 THIQ + SUA  TALS, + e T, (45)

Since this equation always holds good, and y),,'f;’" is not always 0,

we have

G

déd‘ S oAn ¢n Am ey .
( p7 + S5 .A , + J“,‘u’,+Q,‘)T:.: = 0. (46)

Representing (46) as a malrix form with (3), (7), (31), (33) and
(42), we have the eguations (34) and (36).

Furthermore, by using

the relation (41), the boundary ‘condition {(40) becomes

=0 (47)
Q.E.D.

5. Gauge field

Representing the nonlinear system (4) with the tensors, we have

dXY
dt

= &T(A) e (48)

In this section the curvilinear coordinate system is constructed on
which the nonlinear system (48) is obseved as a linear system (12).
Since the equation (48) is equivalent to the Riemannian geomelric

model (16), we have
{u »\} “ = u -’{’) (49)
Using (11} and the relations

(7 ) ark 4z _ drfl _ arh 4.1
"o *o 7 oFr dt  dil pxr dt !

the equation (19) becomes the [ollowing partial dilferential equation

;)
(B )= A7,
o) ) =

- 8an(®). (50)
Theorem 4: The homeomorplism T between thie integral mani-

fold of a nonlinear system (4) and that of a linear system (5) satisfies

a partial differential equation (50).

Since this equalion is a quasi-linear partial differential equation of

first order, we have the characleristic equations.

dxXY - Sy

o = an(x) af (51)
drh PR

o= A,,r“—fw(r"(‘ ). (52)

Proof: Proof is given as above.

6. Double-effect evaporator
The llow diagram of the double effect evaporator is shown in Fig. 1.
In this paper the plant parameters are adopted from that of the pilot

plant al the University of Alberta. The process variables and their

steady state valnes are shown in Table | {1],[2].

This plant consists of two evaporators which are connected sequen-
tinlly. The malerial flows into the first step evaporator with the llow
rate T, and healed by the steam. The product of the first step evap-
orator flows into Lhe second step evaporator with the flow rate B1
and heated by the overhsad vapor of the first step evaporator. The
product of the second step evaporator is taken out with the flow rate
B32. The overhead vapor of the second slep evaporator is condensed
by the water and taken oul as the second product. The vapor which

has not been condensed in the second step evaporator is discharged.

STEA ®—‘ S z

) i -
FEED @ | 1 @’7 l @
e 12,02
TF GF pre > VACUM
COCLING —3»—y

WATER PRODUCT2

Fig.1: Schematic diagram of a double-eflect evaporator

The dynamics of this plant is given in [1].

df% = F-Bl-01 (53)
Vlﬁi—;—l = F(CF-Cl)+01-C1 (51)
”I%l- = FPHF-IT1) -0 HO1-1H1)+0Q1 -1l

(55)

%‘{3 = Bl-B2-02 (56)

W ('(”2 = BIC1-C2)+02-C2 (57)
QU = UL-AWTS~T)=A§ (58)
Q2 = U2-AATL-T2) (59)
Ol = (Q2+L2)/(IO1 - HC) (60)
02 = QZ—-L3+B.1(HI——1’2)+],)H2'BI(C2—C[)

HO2-H2+ DH2-C2
(61)
T1 = (A1+32.1)/(10-0.16-C1) (62)
TS = S(HS+32.0+T1-UL-AlJ(UL+ A1+ S) (63)
T2 = (H2+32.1)/(1.0-0.16-C2) (64)

2 = T2+(1.0-0.16-C2) - 32.1 (65)

HOL = 106614 0.4-T1 (66)

HO2 = 1066.1+04 -T2 (67)

HC = Ti-321 (68)

pi2 = ‘()){122 (69)

In 1], the plaut is treated as a 3 inputs 5th order controlled system
(5NL MODEL) and the controller is designed as a linear controlled
system. In this paper, the plant is designed as a 3 inpuls 5th order
nonlinear system with the form of (1). The syslent variables are

transformed as
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p = WI-WI
2 = C1-C1

za = M1-T1
ry = W2-W2
s = C2-C2

v = S-§

u, = Bl1-DBI

w = B2- B2,

(70)
(71)
(1)
(73)

State variables

Wi liguid holdup in the first effect. 30 1L
Cl product concentration from the 0.0485

first eflect
1 liuid enthalpy in the first eflect 194 Btu/lb
W2 liquid holdup. in the second effect a5 1b
C2 product concentration from the 0.0965

second eflect .

Control variables

S stecam flowrate into the first eflect 1.9 Ib/min
131 bottotns (lowrate from the first effect | 3.3 Ib/min
32 bottoms (lowrate fromn the 1.659 Ib/min

second effect.

Load variables
o feed (lowrate 5.0 Ib/min
P [eed concentration 0.032
HE  feed enthalpy 162 Biu/Ib
Other variables

Ol overhead vapor from the first efTect 1.701 Ih/imin
02 overhead vapor [roin the second effect | 1.641 1b/inin
P pressure in the first effect < 25.0 psia
1’2 pressure in the second effect 7.5 psia
TF temperature of feed 190 °F
T1 teriperature in the first effect 2279 °F
T2 temperature in the second effect 1415 °F
TS temperature of steam 2550 °F
IHO1  first effect overhead vapor enthalpy 1157.3 Btu/1b
[HO2  second effect overhead vapor enthalpy | 1122.7 Btu/lb
Qt heat flow rate in the first effect 1831.1 Btu/min
Q2 heat flow rate in the second effect. 1610.8 Btu/min
12 lignid enthalpy in the second effect 107.2 Btu/lb
1% steaw enthalpy 1184.7 Btu/lb
¢ liquid enthalpy in Lhe condenser Btu/lb
A lLieat transfer area ft?
U heat transfer coelficient Btu/min/°F/ft 2
Ui - Al 67.567 Btu/min/°F
U2+ A2 18.644 Btu/min/°TF
.1 heat foss 31.943 Btu/min
L2 heat loss 25.0 Btu/min
L3 heat. loss 230.21 Btu/min
D2 -22.64 Blu/lh
A

963.7 Btu/Ib

Table.1: Steady values of process variables

wlere the sign  mecans a steady state value. Now, in this paper,
the vapors Q1 and (2 are not treated as the state variables. There-
fore by the relations (58)~(69), 01,02, [{O1 are approximated as

01 = & z3+@ za+01 (78)

02 = By 22+ Py za+ By o5 + s ua+ 02 (79)
HOl = 7, z347,za+ HOL (80)

@ = 271, 72 =0.195, 4, = 0.494, §, = 0.0218

Ba = —0.0737, g, = 0.0846, 7, = —171.9, 7, = 0.403.

The state equations are represented as

i(;l —ax3 — @aLy — U2 (81)
dz, —F 4 (x4 Car 4+ 01 (2 + T,
— = — xr —=
di 2+ Wi 2w
(82)
drg  —(F%2 + Fpx3 + HO)w, - 7,&1
dt x + W1 2
(122 + HOlzz + HON)&, - 7,01 — BT
+ — 3
z,+ Wi
A 21+m
+ ey - Sy 83
PR O T S (53)
dzy - — — .
i = —fix2— Pyws — Pz + (1= fy)uz —ua (84)
drg _ B+ (€5 +E)ﬁ‘r
dt T4+ W2
s + C2). —Bl1+(25+C2f5+ 05 -
¥ (1’5+(_2)_/321_3+ B1+(4rd+_r)/3+/3st
T4+ W2 24+ W2
£y — 25+ Cl— C2)+ (x5 + C2)8.
+ (22 =25+ L&-(Es +C2) Lu,y. (85)
T4+ W2

7. Algorithm and simulation results

The optlimal control law in Theorem 3 is constructed from the
liomeomorphism and the solution of the Riccati equation. When the
homeomorphism is derived by the solution of the partial differential
equation in Theorem 4, it is important where the integral manifold
of the nonlinear model is in contact with that of the linear modei.
In this paper the initial point is regarded as the contact point. The
hiomeomorphism is calculated by using the characteristic equation
(52) along the trajectory of the nonlinear systein (51) instead of the
direct calculation of the partial differential equation. The simulation
results to the double-effect evaporator are shown in Fig.2 and Fig.3.
Where the matrices Q and R are taken as unit matrices I and Iy,
respectively. As a result, the responce speed of the nonlinear regn-

lator is faster than that of the conventional control.

8. Conclusions

By using a suitable curvilinear coordinate axcs, the Riemannian
geometric model and its dual model have been derived in Theorem |
and Theercin 2. Because the Riemmanian geometric model is honme-
omorphic to a linear model, the nonlinear optimal regulator has been
derived in Theorem 3 by using this homeomorphism. Furthermore,
it has been discussed how to distort the curvilinear coordinate axes
fitted to the nonlinear system, and a partial differential equation
with respect to the homeomorphisin has been derived in Theorem 4.
Applying this nonlinear regulator theory to the double-effect evapo-

ralor, the usefnlness of this regulator has been confirmed.
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Fig.2: Trajectoties of controled evaporator (case 1)
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