• Title/Summary/Keyword: Riemann-Liouville derivative operator

Search Result 7, Processing Time 0.019 seconds

ON SOME WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING EXTENDED RIEMANN-LIOUVILLE FRACTIONAL CALCULUS OPERATORS

  • Iqbal, Sajid;Pecaric, Josip;Samraiz, Muhammad;Tehmeena, Hassan;Tomovski, Zivorad
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.161-184
    • /
    • 2020
  • In this article, we establish some new weighted Hardy-type inequalities involving some variants of extended Riemann-Liouville fractional derivative operators, using convex and increasing functions. As special cases of the main results, we obtain the results of [18,19]. We also prove the boundedness of the k-fractional integral operator on Lp[a, b].

ON A CERTAIN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATOR

  • Nisar, Kottakkaran Sooppy;Rahman, Gauhar;Tomovski, Zivorad
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.507-522
    • /
    • 2019
  • The main aim of this present paper is to present a new extension of the fractional derivative operator by using the extension of beta function recently defined by Shadab et al. [19]. Moreover, we establish some results related to the newly defined modified fractional derivative operator such as Mellin transform and relations to extended hypergeometric and Appell's function via generating functions.

SOME FAMILIES OF INFINITE SUMS DERIVED BY MEANS OF FRACTIONAL CALCULUS

  • Romero, Susana Salinas De;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.135-146
    • /
    • 2001
  • Several families of infinite series were summed recently by means of certain operators of fractional calculus(that is, calculus of derivatives and integrals of any real or complex order). In the present sequel to this recent work, it is shown that much more general classes of infinite sums can be evaluated without using fractional calculus. Some other related results are also considered.

  • PDF

FRACTIONAL DIFFERENTIATION OF THE PRODUCT OF APPELL FUNCTION F3 AND MULTIVARIABLE H-FUNCTIONS

  • Choi, Junesang;Daiya, Jitendra;Kumar, Dinesh;Saxena, Ram Kishore
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.115-129
    • /
    • 2016
  • Fractional calculus operators have been investigated by many authors during the last four decades due to their importance and usefulness in many branches of science, engineering, technology, earth sciences and so on. Saigo et al. [9] evaluated the fractional integrals of the product of Appell function of the third kernel $F_3$ and multivariable H-function. In this sequel, we aim at deriving the generalized fractional differentiation of the product of Appell function $F_3$ and multivariable H-function. Since the results derived here are of general character, several known and (presumably) new results for the various operators of fractional differentiation, for example, Riemann-Liouville, $Erd\acute{e}lyi$-Kober and Saigo operators, associated with multivariable H-function and Appell function $F_3$ are shown to be deduced as special cases of our findings.

ASYMPTOTIC BEHAVIORS OF FUNDAMENTAL SOLUTION AND ITS DERIVATIVES TO FRACTIONAL DIFFUSION-WAVE EQUATIONS

  • Kim, Kyeong-Hun;Lim, Sungbin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.929-967
    • /
    • 2016
  • Let p(t, x) be the fundamental solution to the problem $${\partial}^{\alpha}_tu=-(-{\Delta})^{\beta}u,\;{\alpha}{\in}(0,2),\;{\beta}{\in}(0,{\infty})$$. If ${\alpha},{\beta}{\in}(0,1)$, then the kernel p(t, x) becomes the transition density of a Levy process delayed by an inverse subordinator. In this paper we provide the asymptotic behaviors and sharp upper bounds of p(t, x) and its space and time fractional derivatives $$D^n_x(-{\Delta}_x)^{\gamma}D^{\sigma}_tI^{\delta}_tp(t,x),\;{\forall}n{\in}{\mathbb{Z}}_+,\;{\gamma}{\in}[0,{\beta}],\;{\sigma},{\delta}{\in}[0,{\infty})$$, where $D^n_x$ x is a partial derivative of order n with respect to x, $(-{\Delta}_x)^{\gamma}$ is a fractional Laplace operator and $D^{\sigma}_t$ and $I^{\delta}_t$ are Riemann-Liouville fractional derivative and integral respectively.

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF

FRACTIONAL POLYNOMIAL METHOD FOR SOLVING FRACTIONAL ORDER POPULATION GROWTH MODEL

  • Krishnarajulu, Krishnaveni;Krithivasan, Kannan;Sevugan, Raja Balachandar
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.869-878
    • /
    • 2016
  • This paper presents an ecient fractional shifted Legendre polynomial method to solve the fractional Volterra's model for population growth model. The fractional derivatives are described based on the Caputo sense by using Riemann-Liouville fractional integral operator. The theoretical analysis, such as convergence analysis and error bound for the proposed technique has been demonstrated. In applications, the reliability of the technique is demonstrated by the error function based on the accuracy of the approximate solution. The numerical applications have provided the eciency of the method with dierent coecients of the population growth model. Finally, the obtained results reveal that the proposed technique is very convenient and quite accurate to such considered problems.