• 제목/요약/키워드: Riemann zeta function

검색결과 48건 처리시간 0.029초

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF

RESULTS ON THE ALGEBRAIC DIFFERENTIAL INDEPENDENCE OF THE RIEMANN ZETA FUNCTION AND THE EULER GAMMA FUNCTION

  • Xiao-Min Li;Yi-Xuan Li
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1651-1672
    • /
    • 2023
  • In 2010, Li-Ye [13, Theorem 0.1] proved that P(ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), Γ"(z)) ≢ 0 in ℂ, where m is a non-negative integer, and P(u0, u1, . . . , um, v0, v1, v2) is any non-trivial polynomial in its arguments with coefficients in the field ℂ. Later on, Li-Ye [15, Theorem 1] proved that P(z, Γ(z), Γ'(z), . . . , Γ(n)(z), ζ(z)) ≢ 0 in z ∈ ℂ for any non-trivial distinguished polynomial P(z, u0, u1, . . ., un, v) with coefficients in a set Lδ of the zero function and a class of nonzero functions f from ℂ to ℂ ∪ {∞} (cf. [15, Definition 1]). In this paper, we prove that P(z, ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), . . . , Γ(n)(z)) ≢ 0 in z ∈ ℂ, where m and n are two non-negative integers, and P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is any non-trivial polynomial in the m + n + 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being meromorphic functions of order less than one, and the polynomial P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is a distinguished polynomial in the n + 1 variables v0, v1, . . . , vn. The question studied in this paper is concerning the conjecture of Markus from [16]. The main results obtained in this paper also extend the corresponding results from Li-Ye [12] and improve the corresponding results from Chen-Wang [5] and Wang-Li-Liu-Li [23], respectively.

CDMA 셀룰라 시스템에서의 역방향 간섭 한계 (Reverse Link Interference Bounds in CDMA Cellular Systems)

  • 김호준
    • 한국정보통신학회논문지
    • /
    • 제7권3호
    • /
    • pp.395-402
    • /
    • 2003
  • CDMA 셀룰라 시스템의 용량은 간섭의 양에 따라 좌우되는 특성을 갖고 있으므로 이 간섭량을 정확히 계산해야 시스템 성능 평가를 정확히 할 수 있다. 본 논문은 CDMA 셀룰라 시스템의 역방향 타셀 간섭량을 계산하기 위한 근사식을 제시하였다. 이 근사식은 Riemann-Zeta 함수를 이용하여 임의의 전파 감쇄 지수에도 적용할 수 있는 특징이 있다. 그 효용을 살펴보기 위해 계산 결과와 시뮬레이션 결과와 비교하였다. 제안된 근사식을 이용해 계산한 시스템 용량은 시뮬레이션을 통해 얻은 용량과 근사한 결과를 얻을 수 있었다. 제안된 타셀 간섭 근사식은 복합적인 전파 환경이 고려되어야 할 계층셀 시스템에서의 간섭 및 용량 계산과 알고리즘 검증에 유용하게 사용될 수 있을 것으로 생각된다.

소수계량함수 (The Prime Counting Function)

  • 이상운;최명복
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권10호
    • /
    • pp.101-109
    • /
    • 2011
  • 리만의 제타함수 $\zeta(s)$는 주어진 수 x보다 작은 소수의 개수 $\pi$(x)를 구하는 해답으로 알려져 있으며, 소수정리에서 지금까지 리만의 제타 함수 이외에 $\frac{x}{lnx}$,Li(x)와 R(x)의 근사치 함수가 제안되었다. 여기서 $\pi$(x)와의 오차는 R(x) < Li(x) < $\frac{x}{lnx}$이다. 로그적분함수 Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$, ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$ 이다. 본 논문은 $\pi$(x)는 유한급수��Li(x)로 표현됨을 보이며, 일반화된 $\sqrt{ax}{\pm}{\beta}$의 소수계량함수를 제안한다. 첫 번째로, $\pi$(x)는 $0{\leq}t{\leq}2k$의 유한급수인 $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$$Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})\rfloor$, $k\geq2$ 함수로 표현됨을 보였다. $Li_3$(x)는 $\pi(x){\simeq}Li_3(x)$가 되도록 ${\alpha}$ 값을 구하고 오차를 보정하는 ${\beta}$ 값을 갖도록 조정하였다. 이 결과 $x=10^k$에 대해 $Li_3(x)=Li_4(x)=\pi(x)$를 얻었다. 일반화된 함수로 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$를 제안하였다. 제안된 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ 함수는 리만의 제타함수에 비해 소수를 월등히 계량할 수 있었다.

NOTES ON FORMAL MANIPULATIONS OF DOUBLE SERIES

  • Choi, June-Sang
    • 대한수학회논문집
    • /
    • 제18권4호
    • /
    • pp.781-789
    • /
    • 2003
  • Formal manipulations of double series are useful in getting some other identities from given ones and evaluating certain summations, involving double series. The main object of this note is to summarize rather useful double series manipulations scattered in the literature and give their generalized formulas, for convenience and easier reference in their future use. An application of such manipulations to an evaluation for Euler sums (in itself, interesting), among other things, will also be presented to show usefulness of such manipulative techniques.

COUNTING SUBRINGS OF THE RING ℤm × ℤn

  • Toth, Laszlo
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1599-1611
    • /
    • 2019
  • Let $m,n{\in}{\mathbb{N}}$. We represent the additive subgroups of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$, which are also (unital) subrings, and deduce explicit formulas for $N^{(s)}(m,n)$ and $N^{(us)}(m,n)$, denoting the number of subrings of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$ and its unital subrings, respectively. We show that the functions $(m,n){\mapsto}N^{u,s}(m,n)$ and $(m,n){\mapsto}N^{(us)}(m,n)$ are multiplicative, viewed as functions of two variables, and their Dirichlet series can be expressed in terms of the Riemann zeta function. We also establish an asymptotic formula for the sum $\sum_{m,n{\leq}x}N^{(s)}(m,n)$, the error term of which is closely related to the Dirichlet divisor problem.

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF