
Bull. Korean Math. Soc. 60 (2023), No. 6, pp. 1651–1672

https://doi.org/10.4134/BKMS.b220813

pISSN: 1015-8634 / eISSN: 2234-3016

RESULTS ON THE ALGEBRAIC DIFFERENTIAL
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Abstract. In 2010, Li-Ye [13, Theorem 0.1] proved that

P
(
ζ(z), ζ′(z), . . . , ζ(m)(z),Γ(z),Γ′(z),Γ

′′
(z)

)
̸≡ 0 in C,

where m is a non-negative integer, and P (u0, u1, . . . , um, v0, v1, v2) is any

non-trivial polynomial in its arguments with coefficients in the field C.
Later on, Li-Ye [15, Theorem 1] proved that

P
(
z,Γ(z),Γ′(z), . . . ,Γ(n)(z), ζ(z)

)
̸≡ 0

in z ∈ C for any non-trivial distinguished polynomial P (z, u0, u1, . . .,

un, v) with coefficients in a set Lδ of the zero function and a class of non-

zero functions f from C to C∪{∞} (cf. [15, Definition 1]). In this paper,

we prove that P
(
z, ζ(z), ζ′(z), . . . , ζ(m)(z),Γ(z),Γ′(z), . . . ,Γ(n)(z)

)
̸≡ 0

in z ∈ C, where m and n are two non-negative integers, and

P (z, u0, u1, . . . , um, v0, v1, . . . , vn)

is any non-trivial polynomial in the m+ n+ 2 variables

u0, u1, . . . , um, v0, v1, . . . , vn

with coefficients being meromorphic functions of order less than one, and

the polynomial P (z, u0, u1, . . . , um, v0, v1, . . . , vn) is a distinguished poly-

nomial in the n+ 1 variables v0, v1, . . . , vn. The question studied in this
paper is concerning the conjecture of Markus from [16]. The main re-

sults obtained in this paper also extend the corresponding results from

Li-Ye [12] and improve the corresponding results from Chen-Wang [5] and
Wang-Li-Liu-Li [23], respectively.

1. Introduction and main results

Throughout this paper, by meromorphic functions we will always mean
meromorphic functions in the complex plane. To prove the main results in
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the present paper, we will apply Nevanlinna’s theory and adopt the standard
notations of the Nevanlinna’s theory. We assume that the readers are familiar
with the standard notations which are used in the Nevanlinna’s theory such as
the characteristic function T (r, f), the proximity function m(r, f), the counting
function N(r, f) and the reduced counting function N(r, f) of a meromorphic
function f that are explained in [8,11,24,25], their detail notions are defined as
follows: for a non-constant meromorphic function f in the complex plane, the
proximity functionm(r, f), the counting function N(r, f), the reduced counting
function N(r, f) and the characteristic function T (r, f), are defined as

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ,

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r and

T (r, f) = m(r, f) +N(r, f), respectively.

Here log+ x = max{0, log x} for any non-negative real number x, n(t, f) denotes
the numbers of the poles of f in {z : |z| ≤ t}, where each pole of f in {z : |z| ≤ t}
is counted according to its multiplicity as a pole of f , while n(t, f) denotes the
reduced form of n(t, f). The properties of m(r, f), N(r, f), N(r, f) and T (r, f)
can be found in [8, 11,24,25].

In 1886, Hölder [10] began to study the question of the algebraic differen-
tial independence of the Euler gamma function Γ and proved that the Euler
gamma function Γ does not satisfy any non-trivial algebraic differential equa-
tions with polynomial coefficients. Later on, Bank-Kaufman [2] improved the
corresponding result from Hölder [10] and proved that the Euler gamma func-
tion Γ does not satisfy any non-trivial algebraic differential equation whose
coefficients are meromophic functions ϕ with their Nevanlinna’s characteris-
tics satisfying T (r, ϕ) = o(r) as r → +∞. On the other hand, as one of the
well-known list of 23 problems introduced by Hilbert [9], Problem 18 wrote:
whether or not the Riemann zeta function ζ and allied functions satisfy any
non-trivial algebraic differential equation? The question was solved in [18,19].
We recall that the Riemann zeta function ζ is associated with the Euler gamma
function Γ by the Riemann functional equation (cf. [1, p. 217])

ζ(1− z) = 21−zπ−zΓ(z)ζ(z) cos
πz

2
.

One may ask, whether or not the Euler gamma function Γ and the Riemann
zeta function ζ are related by any non-trivial algebraic differential equation?
In this direction, Markus [16] deduced that the Euler gamma function Γ and
the composition function ζ(sin(2πz)) are differential independent over C. More-
over, Markus [16] conjectured that the Euler gamma function Γ is not a solution
of any non-trivial algebraic differential equation, even allowing coefficients that
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are differential polynomials in ζ over C. In other words, this conjecture can be
expressed as follows:

Conjecture 1.1 (The conjecture of Markus, [16]). Let

P (u0, u1, . . . , um, v0, v1, . . . , vn)

be a polynomial in u0, u1, . . . , um, v0, v1, . . . , vn in the field C, where m and n
are two positive integers. If

P
(
ζ(z), ζ ′(z), . . . , ζ(m)(z),Γ(z),Γ′(z), . . . ,Γ(n)(z)

)
= 0

identically in z ∈ C, then P is identically zero.

In recent ten years, many mathematicians studied Conjecture 1.1 and ob-
tained many interesting results, which can be found, for example, in Li-Ye
[12–15] and [23]. For the case of the following narrations, we recall the fol-
lowing notations from Li-Ye [12]: let P (u0, u1, . . . , um, v0, v1, . . . , vn) be any
polynomial in the m+ n+ 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coeffi-
cients in C, where and in what follows, m and n are two positive integers. For
a non-negative integer µ, we let

Λ = Λ(µ)(1)

= {(λ0, λ1, . . . , λµ) : λj is a non-negative integer with 0 ≤ j ≤ µ < ∞}

be a finite multi-index set, and let

(2) Λk = {λ ∈ Λ : |λ| = k} with |λ| =
µ∑

j=0

λj

and

(3) Λ∗
k = {λ ∈ Λ : |λ|∗ = k} with |λ|∗ =

µ∑
j=0

jλj .

Then, it follows that there is a non-negative integer N such that

(4) P (u0, u1, . . . , um, v0, v1, . . . , vn)=
N∑
j=0

∑
λ∈Λj

aλ(u0, u1, . . . , um)vλ0
0 vλ1

1 · · · vλn
n ,

where aλ(u0, u1, . . . , um) is a polynomial in the m+ 1 variables u0, u1, . . . , um

with coefficients in C. We set

(5) Pj(u0, u1, . . . , um, v0, v1, . . . , vn) =
∑
λ∈Λj

aλ(u0, u1, . . . , um)vλ0
0 vλ1

1 · · · vλn
n .

Moreover, we write

(6) Pj(u0, u1, . . . , um, v0, v1, . . . , vn) =

Nj∑
p=0

Pj,p(u0, u1, . . . , um, v0, v1, . . . , vn),
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with

Pj,p(u0, u1, . . . , um, v0, v1, . . . , vn)(7)

=
∑

λ∈Λj
⋂

Λ∗
p

aλ(u0, u1, . . . , um)vλ0
0 vλ1

1 · · · vλn
n ,

where Nj is a non-negative integer. Consequently, we have by (1)-(7) that

P (u0, u1, . . . , um, v0, v1, . . . , vn)(8)

=

N∑
j=0

Pj(u0, u1, . . . , um, v0, v1, . . . , vn)

=

N∑
j=0

Nj∑
p=0

Pj,p(u0, u1, . . . , um, v0, v1, . . . , vn).

We recall the following results from Li-Ye [12] and Li-Ye [13], respectively:

Theorem 1.2 ([12, Theorem1]). Let P (u0, u1, . . . , um, v0, v1, . . . , vn) defined
as in (8) be any non-trivial polynomial in the m+ n+ 2 variables

u0, u1, . . . , um, v0, v1, . . . , vn

with coefficients in C, where m and n are two non-negative integers. If

(9)
∑

λ∈Λj
⋂

Λ∗
p

aλ(u0, u1, . . . , um) ̸≡ 0

whenever Pj,p(u0, u1, . . . , um, v0, v1, . . . , vn) ̸≡ 0 for all possible j and p such
that 0 ≤ p ≤ Nj with 0 ≤ j ≤ N and j ∈ Z, then

P
(
ζ(z), ζ ′(z), . . . , ζ(m)(z),Γ(z),Γ′(z), . . . ,Γ(n)(z)

)
̸≡ 0

in z ∈ C.

Theorem 1.3 ([13, Theorem 0.1]). Let m be a non-negative integer, and let
P (u0, u1, . . . , um, v0, v1, v2) be a polynomial in its arguments with coefficients
in the field C. If

P
(
ζ(z), ζ ′(z), . . . , ζ(m)(z),Γ(z),Γ′(z),Γ′′(z)

)
= 0

identically in z ∈ C, then the polynomial P is identically zero.

The following definition is from Li-Ye [15]:

Definition 1 ([15, Definition 2]). Let I = (i0, i1, . . . , in) be a multi-index with
|I| =

∑n
k=0 ik. A polynomial in the variable u0, u1, . . . , un with functional

coefficients aI in a set S consisting of the zero function and a class of non-zero
functions can be always written into

P (u0, u1, . . . , un) =
∑
I∈Λ

aIu0
i0u1

i1 · · ·un
in ,
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where Λ is a multi-index set. We call P (u0, u1, . . . , un) an S-distinguished
polynomial in u0, u1, . . . , un or simply an S-distinguished polynomial, if the
multi-index set Λ satisfies |Ii| ≠ |Ij | for distinct multi-indices Ii, Ij in Λ.

Remark 1.4 ([15, p. 1458]). By Definition 1 we can see that any polynomial
P (z, u) in one argument u with functional coefficients is a distinguished poly-
nomial in u. In addition, any polynomial P (z, u, v) in two arguments u and v
with functional coefficients can be written into

P (z, u, v) =

m∑
k=0

Pk(z, u)v
k,

where P1(z, u), P2(z, u), . . . , Pm(z, u), not all identically zero, are distinguished
polynomials with functional coefficients.

The question of the algebraic independence for the special case of Γ and ζ is
solved by Li-Ye [14]. Indeed, they proved that Γ and ζ cannot satisfy non-zero
polynomial equation P (z, u, v) = 0. Later on, Li-Ye [15] showed that

P
(
z,Γ(z),Γ′(z), . . . ,Γ(n)(z), ζ(z)

)
̸≡ 0

in z ∈ C for any non-trivial distinguished polynomial P (z, u0, u1, . . . , un, v) in
v with coefficients being allowed to be any polynomial of ζ over C, over the
ring of polynomials or more generally over a set Lδ of the zero function and a
class of non-zero functions f from C to C ∪ {∞} (cf. [15, Definition 1]).

Recently, Wang-Li-Liu-Li [23] and Chen-Wang [5] respectively proved the
following results of which Theorem 1.5 improved Theorem 1.3:

Theorem 1.5 ([5, Theorem 1.5]). Let m, n, l, α be non-negative integers and
l > n > α ≥ 0, and let P (u0, u1, . . . , um, vα, vn, vl) be a polynomial in the m+4
variables u0, u1, . . . , um, vα, vn, vl with coefficients being polynomials in z ∈ C.
If

P
(
ζ(z), ζ ′(z), . . . , ζ(m)(z),Γ(α)(z),Γ(n)(z),Γ(l)(z)

)
= 0

identically in z ∈ C, then P is identically zero.

Theorem 1.6 ([5, Theorem 1.5]). Let m and n be two positive integers, let N be
a non-negative integer, and let P (u0, u1, . . . , um, v0, v1, . . . , vn) be a polynomial
in the m+ n+ 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients in the
field C such that

P (u0, u1, . . . , um, v0, v1, . . . , vn) =

N∑
j=0

Pj(u0, u1, . . . , um, v0, v1, . . . , vn),

where

Pj(u0, u1, . . . , um, v0, v1, . . . , vn) =
∑
I∈Λj

aI(u0, u1, . . . , um)v0
λ0v1

λ1 · · · vnλn
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is a distinguished polynomial in v0, v1, . . . , vn for 0 ≤ j ≤ N and j ∈ Z, and
aI(u0, u1, . . . , um) for I ∈ Λj, 0 ≤ j ≤ N and j ∈ Z is a polynomial in the
m+ 1 variables u0, u1, . . . , um with coefficients in the field C. If

P
(
ζ(z), ζ ′(z), . . . , ζ(m)(z),Γ(z),Γ′(z), . . . ,Γ(n)(z)

)
= 0

identically in z ∈ C, then P is identically zero.

Next we give the definition of the order of a non-constant meromorphic
function:

Definition 2 ([8,11,24,25]). For a non-constant meromorphic function f , the
order of f is defined as

ρ(f) = lim sup
r→∞

logT (r, f)

logr
.

Remark 1.7. For a non-constant entire function f , the order of f is defined as

ρ(f) = lim sup
r→∞

log logM(r, f)

logr
,

where M(r, f) = max
|z|≤r

{|f(z)|}.

Regarding Theorems 1.2-1.5, one may ask the following question that is
much more general than Conjecture 1.1:

Question 1.8. Whether or not

P
(
ζ(z), ζ ′(z), . . . , ζ(m)(z),Γ(z),Γ′(z), . . . ,Γ(n)(z)

)
̸≡ 0

in z ∈ C, where P (u0, u1, . . . , um, v0, v1, . . . , vn) is any non-trivial polynomial
in the m + n + 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being
meromorphic functions of order less than one, while m and n are two non-
negative integers?

We will study Question 1.8, and prove the following result:

Theorem 1.9. Let P (z, u0, u1, . . . , um, v0, v1, . . . , vn) be a polynomial in the
m+n+2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being meromor-
phic functions of order less than one, where m and n are two non-negative in-
tegers. Suppose that P (z, u0, u1, . . . , um, v0, v1, . . . , vn) is a distinguished poly-
nomial in the n+ 1 variables v0, v1, . . . , vn such that

P (z, u0, u1, . . . , um, v0, v1, . . . , vn)(10)

=

t∑
j=0

aIj (z, u0, u1, . . . , um)v
ij,0
0 v

ij,1
1 · · · vij,nn

= aI0(z, u0, u1, . . . , um) + aI1(z, u0, u1, . . . , um)v
i1,0
0 v

i1,1
1 · · · vi1,nn + · · ·

+ aIt(z, u0, u1, . . . , um)v
it,0
0 v

it,1
1 · · · vit,nn ,
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where t is some non-negative integer, and aIj (z, u0, u1, . . . , um) with 0 ≤ j ≤ t
is a polynomial in the m + 1 variables u0, u1, . . . , um with coefficients being
meromorphic functions of order less than one. If

(11) P
(
z, ζ(z), ζ ′(z), . . . , ζ(m)(z),Γ(z),Γ′(z), . . . ,Γ(n)(z)

)
= 0

identically in z ∈ C, then the polynomial P is identically zero.

By Theorem 1.9 we deduce the following result that improves Theorem 1.6:

Corollary 1.10. Let P (z, u0, u1, . . . , um, v0, v1, . . . , vn) be a polynomial in the
m + n + 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being poly-
nomials over C, where m and n are two non-negative integers. Suppose that
P (z, u0, u1, . . . , um, v0, v1, . . . , vn) is a distinguished polynomial in the n + 1
variables v0, v1, . . . , vn such that (10) holds, where t is some non-negative in-
teger, and aIj (z, u0, u1, . . . , um) with 0 ≤ j ≤ t is a polynomial in the m + 1
variables u0, u1, . . . , um with coefficients being polynomials in the field C. If
(11) holds identically in z ∈ C, then the polynomial P is identically zero.

2. Preliminaries

In this section, we will introduce some lemmas that play an important role in
proving the main results of this paper. First of all, we introduce the following
result that is due to Miles [17]:

Lemma 2.1 ([17, Theorem]). There exist absolute constants A and B such
that if f is any meromorphic function in the plane, then there exist entire
functions f1 and f2 such that f = f1/f2 and such that T (r, fj) < AT (Br, f)
for 1 ≤ j ≤ 2 and r > 0.

We also need the following result due to Voronin [22]:

Lemma 2.2 ([22] or [20, p. 11, Theorem 1.6]). For any fixed complex numbers
z with Re(z) = σ satisfying 1

2 < σ < 1, the set{
(ζ(z + iτ), ζ ′(z + iτ), . . . , ζ(n−1)(z + iτ)) : τ ∈ R

}
is dense in Cn.

The following result was originally proved in [15]:

Lemma 2.3 ([15, p. 1462]). For the Euler gamma function Γ and any given
positive integer q ≥ 1 we have

Γ(q)(z)

Γ(z)
= (log z)q(1 + o(1)),

uniformly for any small ε > 0 and for all z ∈ C \ {z : | arg z − π| ≤ ε} such
that z → ∞.

The following result is called minimum modulus theorem, which can be
found, for example, in Berenstein-Gay [3, p. 362, 4.5.14]:
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Lemma 2.4 (Minimum Modulus Theorem, [3, p. 362, 4.5.14]). Let f be holo-
morphic in the disk {z : |z| < 2eR} =: B(0, 2eR) and continuous in the closure
of this disk. Assume f(0) = 1 and let ε > 0 be such that 0 < ε < 3e

2 . Then in
the disk |z| ≤ R, and outside a collection of closed disks the sum of whose radii
does not exceed 4εR, we have

log |f(z)| > −
(
2 + log

3e

2ε

)
logM (2eR, f) .

The proof of Lemma 2.4 can be found, for example, in Berenstein-Gay
[3, pp. 362–363, 4.5.14], which is mainly based upon the following famous
Boutroux-Cartan theorem (cf. [4]):

Lemma 2.5 (Boutroux-Cartan Theorem, [4]). Let z1, z2, . . . , zn be n arbitrary
points in the finite complex plane C. Then, for every H > 0, the set of the
points z satisfying the inequality

n∏
j=1

|z − zj | ≤
(
H

e

)n

can be covered by a collection of disks whose number does not exceed n, and the
sum of whose radii does not exceed 2H.

Remark 2.6. All the disks as mentioned in Lemma 2.5 are called the Boutroux-
Cartan exceptional disks about the positive constant H and the n points
z1, z2, . . . , zn as mentioned in Lemma 2.5 (cf. [24, p. 58]). Moreover, each
such point zj with 1 ≤ j ≤ n as mentioned in Lemma 2.5 can be repeated as
many time as its multiplicity implies.

Remark 2.7. From the lines of the proof of Lemma 2.4 (cf. [3, pp. 362–363,
4.5.14]), we can see that the Boutroux-Cartan exceptional disks about the
positive constant 2εR and the zeros, say z1, z2, . . . , zn of f in the closed disk
|z| ≤ R are the closed disks mentioned in Lemma 2.4, whose number does not
exceed n, and the sum of whose radii does not exceed 4εR, where each such
zero zj with 1 ≤ j ≤ n of f in the closed disk |z| ≤ R is repeated as many
times as its multiplicity as a zero of f .

Following [21, p. 289], we introduce the definition of a Dirichlet series: by a
Dirichlet series we mean, in this paper, a series of the form

∑∞
n=1

an

nz , where the
coefficients an are any given numbers, and z is a complex variable. The more
general type of series

∑∞
n=1 ane

−λns is also known as a Dirichlet series. The
special type is obtained by putting λn = log n. For the theory of the general
type we must refer to Hardy-Riesz [7]. Throughout this paper we shall write
z = σ+it, where σ and t are real numbers. We have already had one important
example of a Dirichlet series, the Riemann zeta function ζ(z) =

∑∞
n=1

1
nz . We

recall the following result due to Chiang-Feng [6]:
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Lemma 2.8 ([6, Lemma 4]). Suppose that the Dirichlet series

Fj(z) =

∞∑
n=1

aj(n)

nz

is convergent in the region {σ+ it : σ0 < σ < +∞} with σ0 being some positive
number, where j is a positive integer such 1 ≤ j ≤ N with N being a positive
integer, and suppose that ϕj with 1 ≤ j ≤ N is a meromorphic function in the
complex plane such that its Nevanlinna’s characteristic satisfies T (r, ϕj) = o(r)
as r → +∞. If

N∑
j=1

ϕj(z)Fj(z) = 0

holds identically in z ∈ {σ + it : σ0 < σ < +∞}, then
N∑
j=1

aj(n)ϕj(z) = 0

holds identically in the complex plane for each positive integer n.

By Lemma 2.8 we can get the following result that is the differentiation
analogue of Theorem 1 from [6]:

Lemma 2.9. The Riemann zeta function ζ does not satisfy any algebraic dif-
ferential equation with coefficients being meromorphic functions ϕ such that
their Nevanlinna’s characteristics satisfy T (r, ϕ) = o(r) as r → +∞. That is,
if

f
(
z, ζ(z), ζ ′(z), . . . , ζ(m)(z)

)
= 0

identically in z ∈ C, where m is a non-negative integer, and f(z, u0, u1, . . . , um)
is a polynomial in m+ 1 variables u0, u1, . . . , um with coefficients being mero-
morphic functions ϕ such that their Nevanlinna’s characteristics satisfy T (r, ϕ)
= o(r) as r → +∞, then f(z, u0, u1, . . . , um) is identically zero.

Proof. Suppose that

(12) f(z, u0, u1, . . . , um) =

N∑
j=1

ϕju
ij,0
0 u

ij,1
1 · · ·uij,m

m ,

where ij,0, ij,1, . . . , ij,m with 1 ≤ j ≤ N are non-negative integers and Ij =
(ij,0, ij,1, . . . , ij,m) with 1 ≤ j ≤ N is the corresponding multi-indice such that
Ij1 ̸= Ij2 for any two positive integers j1 and j2 satisfying 1 ≤ j1 < j2 ≤ N ,
while ϕ1, ϕ2, . . . , ϕN are meromorphic functions not all identically zero in the
complex plane such that

(13) T (r, ϕj) = o(r) with 1 ≤ j ≤ N

as r → +∞.
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Since the Riemann zeta function ζ satisfies the algebraic differential equation
f
(
z, ζ(z), ζ ′(z), . . . , ζ(m)(z)

)
= 0 in z ∈ C, we have by (12) that

f
(
z, ζ(z), ζ ′(z), . . . , ζ(m)(z)

)
(14)

=

N∑
j=1

ϕj(z)ζ
ij,0(z)(ζ ′(z))ij,1 · · · (ζ(m)(z))ij,m = 0

identically in z ∈ C.
By the definition of the Riemann zeta function ζ(z) =

∑∞
n=1

1
nz , we deduce

that the differential monomial ζij,0(z)(ζ ′(z))ij,1 · · · (ζ(m)(z))ij,m with 1 ≤ j ≤ N
is a Dirichlet series, say

(15)

∞∑
n=1

Aj(n)

nz
=: ζij,0(z)(ζ ′(z))ij,1 · · · (ζ(m)(z))ij,m with 1 ≤ j ≤ N,

where Aj(n) with 1 ≤ j ≤ N and n ∈ N is some complex number depending

only upon j and n, and the Dirichlet series
∑∞

n=1
Aj(n)
nz is convergent in the

region {z ∈ C : Re(z) > 1}. By (14), (15) and Lemma 2.8 we have for each
n ∈ N that

(16)

N∑
j=1

Aj(n)ϕj(z) = 0

identically in z ∈ C.
Next we let z0 ∈ C be a fixed point such that ϕj(z0) ̸= ∞ for each 1 ≤ j ≤ N ,

and such that
∑N

j=1 |ϕj(z0)| ≠ 0. Then, it follows by (15) and (16) that

(17)

N∑
j=1

ϕj(z0)ζ
ij,0(z)(ζ ′(z))ij,1 · · · (ζ(m)(z))ij,m = 0.

However, Ostrowski [19] proved that the Riemann zeta function ζ is not a
solution of any non-trivial algebraic differential equation with coefficients being
polynomials in C. This implies that (17) is impossible. This proves Lemma
2.9. □

3. Proof of Theorem 1.9

Since P (u0, u1, . . . , um, v0, v1, . . . , vn) is a non-trivial polynomial in the m+
n+2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being meromorphic
functions of order less than one, where m and n are two positive integers, we
may rewrite P (z, u0, u1, . . . , um, v0, v1, . . . , vn) into the following form:

P (z, u0, u1, . . . , um, v0, v1, . . . , vn)(18)

=

t∑
j=0

aIj (z, u0, u1, . . . , um)v
ij,0
0 v

ij,1
1 · · · vij,nn
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= aI0(z, u0, u1, . . . , um) + aI1(z, u0, u1, . . . , um)v
i1,0
0 v

i1,1
1 · · · vi1,nn + · · ·

+ aIt(z, u0, u1, . . . , um)v
it,0
0 v

it,1
1 · · · vit,nn ,

where Ij = (ij,0, ij,1, . . . , ij,n) and |Ij | =
∑n

k=0 ij,k with 0 ≤ j ≤ t and j ∈
Z+ ∪ {0} such that

0 = |I0| < |I1| < · · · < |It|,
and aIj (z, u0, u1, . . . , um) with 0 ≤ j ≤ t and j ∈ Z+ ∪ {0} is a polynomial in
u0, u1, . . . , um with coefficients being meromorphic functions of order less than
one. Since ζ, ζ ′, . . . , ζ(m) and Γ,Γ′, . . . ,Γ(n) satisfy

(19) P (z, u0, u1, . . . , um, v0, v1, . . . , vn) = 0

in z ∈ C, we have by (18) and (19) that

P
(
z, ζ, ζ ′, . . . , ζ(m),Γ,Γ′, . . . ,Γ(n)

)
(20)

= aI0

(
z, ζ, ζ ′, . . . , ζ(m)

)
+ aI1

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=0

(
Γ(k)

)i1,k
+ · · ·+ aIt

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=0

(
Γ(k)

)it,k
= 0

identically in z ∈ C. The second equality of (20) can be rewritten into

− aI0

(
z, ζ, ζ ′, . . . , ζ(m)

)
(21)

= aI1

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=1

(
Γ(k)

Γ

)i1,k

Γ|I1|

+ aI2

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=1

(
Γ(k)

Γ

)i2,k

Γ|I2| + · · ·

+ aIt

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=1

(
Γ(k)

Γ

)it,k

Γ|It|

identically in z ∈ C. Next we prove that the first coefficient aI0(z, ζ, ζ
′, . . .,

ζ(m)) is identically zero in C. On the contrary, supposing that aI0(z, ζ, ζ
′, . . .,

ζ(m)) ̸≡ 0 in C, we will derive a contradiction. Indeed, since aIj (z, ζ, ζ
′, . . .,

ζ(m)) with 0 ≤ j ≤ t and j ∈ Z+ ∪ {0} is a polynomial in ζ, ζ ′, . . . , ζ(m) with
coefficients being meromorphic functions of order less than one, we have

(22) aIj (z, ζ, ζ
′, . . . , ζ(m)) =

Nj∑
p=1

fj,pζ
ij,p,0(ζ ′)ij,p,1 · · · (ζ(m))ij,p,m ,

where and in what follows, Nj with 0 ≤ j ≤ t and j ∈ Z+ ∪ {0} is some
positive integer, fj,p with 0 ≤ j ≤ t, 1 ≤ p ≤ Nj and j, p ∈ Z+ ∪ {0} is some
meromorphic function of order less than one, and ij,p,0, ij,p,1, . . . , ij,p,m with
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0 ≤ j ≤ t, 1 ≤ p ≤ Nj and j, p ∈ Z+ ∪ {0} are some non-negative integers. By
Lemma 2.1 we can see that there exist entire functions Hj,p,1 and Hj,p,2 with
0 ≤ j ≤ t, 1 ≤ p ≤ Nj and j, p ∈ Z+ ∪ {0}, and there exist absolute constants
Aj,p and Bj,p with 0 ≤ j ≤ t, 1 ≤ p ≤ Nj and j, p ∈ Z+ ∪ {0} such that

(23) fj,p =
Hj,p,1

Hj,p,2
,

and such that

(24) T (r,Hj,p,l) < Aj,pT (Bj,pr, fj,p) with l ∈ {1, 2}, when r > 0.

By Definition 2 and Remark 1.7 we deduce

(25) ρ(Hj,p,l) ≤ ρ(fj,p) < 1

with 0 ≤ j ≤ t, 1 ≤ p ≤ Nj for j, p ∈ Z+ ∪ {0} and l ∈ {1, 2}. By substituting
(23) into (22) we have

(26) aIj (z, ζ, ζ
′, . . . , ζ(m)) =

Nj∑
p=1

Hj,p,1

Hj,p,2
ζij,p,0(ζ ′)ij,p,1 · · · (ζ(m))ij,p,m

with 0 ≤ j ≤ t, 1 ≤ p ≤ Nj and j, p ∈ Z+ ∪ {0}. By substituting (26) into (21)
we have

−
N0∑
p=1

H0,p,1

H0,p,2
ζi0,p,0(ζ ′)i0,p,1 · · · (ζ(m))i0,p,m(27)

=

(
N1∑
p=1

H1,p,1

H1,p,2
ζi1,p,0(ζ ′)i1,p,1 · · · (ζ(m))i1,p,m

)
n∏

k=1

(
Γ(k)

Γ

)i1,k

Γ|I1|

+

(
N2∑
p=1

H2,p,1

H2,p,2
ζi2,p,0(ζ ′)i2,p,1 · · · (ζ(m))i2,p,m

)
n∏

k=1

(
Γ(k)

Γ

)i2,k

Γ|I2|

+ · · ·

+

(
Nt∑
p=1

Ht,p,1

Ht,p,2
ζit,p,0(ζ ′)it,p,1 · · · (ζ(m))it,p,m

)
n∏

k=1

(
Γ(k)

Γ

)it,k

Γ|It|

in z ∈ C. Next we set

(28) H =

t∏
j=0

Nj∏
p=1

Hj,p,2 and Hj,p =
HHj,p,1

Hj,p,2

with 1 ≤ j ≤ t, 1 ≤ p ≤ Nj and j, p ∈ Z+.
Multiplying both sides of (27) by the entire function H defined in (28), and

then using the right equality in (28), we have

−
N0∑
p=1

H0,pζ
i0,p,0(ζ ′)i0,p,1 · · · (ζ(m))i0,p,m(29)
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=

(
N1∑
p=1

H1,pζ
i1,p,0(ζ ′)i1,p,1 · · · (ζ(m))i1,p,m

)
n∏

k=1

(
Γ(k)

Γ

)i1,k

Γ|I1|

+

(
N2∑
p=1

H2,pζ
i2,p,0(ζ ′)i2,p,1 · · · (ζ(m))i2,p,m

)
n∏

k=1

(
Γ(k)

Γ

)i2,k

Γ|I2| + · · ·

+

(
Nt∑
p=1

Ht,pζ
it,p,0(ζ ′)it,p,1 · · · (ζ(m))it,p,m

)
n∏

k=1

(
Γ(k)

Γ

)it,k

Γ|It|

in z ∈ C. Noting that H ̸≡ 0, where H is the entire function defined in (28),
we deduce by (26) with j = 0, the supposition aI0(z, ζ, ζ

′, . . . , ζ(m)) ̸≡ 0 in C
and the right equality in (28) that

(30) HaI0(z, ζ, ζ
′, . . . , ζ(m)) =

N0∑
p=1

H0,pζ
i0,p,0(ζ ′)i0,p,1 · · · (ζ(m))i0,p,m ̸≡ 0.

By (25) and (28) we deduce that H and Hj,p with 0 ≤ j ≤ t and 1 ≤ p ≤ Nj

are entire functions such that

(31) ρ(H) < 1 and ρ(Hj,p) < 1 with 0 ≤ j ≤ t and 1 ≤ p ≤ Nj .

By Lemma 2.2 we can see that for any fixed point w∗ = (w0, w1, . . . , wm) ∈
Cm+1 and its some neighborhood Ω ⊂ Cm+1, there exist infinitely many points
zl =

3
4 + iyl such that when l → +∞, we have

(32) zl =
3

4
+ iyl → ∞,

(33)
(
ζ(zl), ζ

′(zl), . . . , ζ
(m)(zl)

)
→ (w0, w1, . . . , wm)

and

(34) ζij,p,0(zl)(ζ
′(zl))

ij,p,1 · · · (ζ(m)(zl))
ij,p,m → w

ij,p,0
0 w

ij,p,1
1 · · ·wij,p,m

m =:cj,p

with 0 ≤ j ≤ t and 1 ≤ p ≤ Nj , where cj,p with 0 ≤ j ≤ t and 1 ≤ p ≤ Nj is a
finite complex number.

By (31) and Remark 1.7 we can see that there exists some positive number
δ0 satisfying 0 < δ0 < 1, such that

(35) |H(zl)| ≤ M(|zl|, H) ≤ e|zl|
δ0

and |Hj,p(zl)| ≤ M(|zl|, Hj,p) ≤ e|zl|
δ0

for any positive integer l.
Using the reasoning of the lines of [21, p. 151] we have for a fixed value of

x = 3/4 that

(36)

∣∣∣∣Γ(3

4
+ iy

)∣∣∣∣ ∼ e−
π
2 |y||y| 14

√
2π
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as y → ±∞. On the other hand, by Lemma 2.3 we have for any given positive
integer q ≥ 1 that

(37)
Γ(q)(z)

Γ(z)
= (log z)q(1 + o(1)),

uniformly for any small ε > 0 and for all z ∈ C \ {z : | arg z−π| ≤ ε} such that
z → ∞. According to (30), we consider the following two cases:

Case 1. Suppose that there exists an infinite subsequence of the infinite
sequence {zl}, say itself, and there exists some positive number ε0, such that∣∣∣H(zl)aI0(zl, ζ(zl), ζ

′(zl), . . . , ζ
(m)(zl))

∣∣∣(38)

=

∣∣∣∣∣
N0∑
p=1

H0,p(zl)ζ
i0,p,0(zl)(ζ

′(zl))
i0,p,1 · · · (ζ(m)(zl))

i0,p,m

∣∣∣∣∣ ≥ ε0

as zl =
3
4 + yl → ∞.

Since 0 < δ0 < 1 and

lim
l→+∞

|zl|
|yl|

= lim
l→+∞

∣∣ 3
4 + iyl

∣∣
|yl|

= lim
l→+∞

√(
3
4

)2
+ y2l

|yl|
= 1,

we can find a sufficiently small positive number ε1 satisfying 0 < ε1 < 1, such
that

(39) |zl| ≤ (1 + ε1)|yl| and 1 < (1 + ε1)
δ0 <

π

2

as l → +∞. By (29), (34), (35), (36), (37), (38) and (39) we deduce

ε0 ≤

∣∣∣∣∣
N0∑
p=1

H0,p(zl)ζ
i0,p,0(zl)(ζ

′(zl))
i0,p,1 · · · (ζ(m)(zl))

i0,p,m

∣∣∣∣∣(40)

≤

(
N1∑
p=1

|H1,p(zl)|
∣∣∣ζi1,p,0(zl)(ζ ′(zl))i1,p,1 · · · (ζ(m)(zl))

i1,p,m
∣∣∣)

×
n∏

k=1

∣∣∣∣Γ(k)(zl)

Γ(zl)

∣∣∣∣i1,k |Γ(zl)||I1|
+

(
N2∑
p=1

|H2,p(zl)|
∣∣∣ζi2,p,0(zl)(ζ ′(zl))i2,p,1 · · · (ζ(m)(zl))

i2,p,m
∣∣∣)

×
n∏

k=1

∣∣∣∣Γ(k)(zl)

Γ(zl)

∣∣∣∣i2,k |Γ(zl)||I2| + · · ·

+

(∣∣∣∣∣
Nt∑
p=1

Ht,p(zl)ζ
it,p,0(zl)(ζ

′(zl))
it,p,1 · · · (ζ(m)(zl))

it,p,m

∣∣∣∣∣
)
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×
n∏

k=1

∣∣∣∣Γ(k)(zl)

Γ(zl)

∣∣∣∣it,k |Γ(zl)||It|
≤ e|zl|

δ0

(
N1∑
p=1

|c1,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i1,k e|I1|(ε−π

2 )|yl|(
√
2π)|I1|

+ e|zl|
δ0

(
N2∑
p=1

|c2,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i2,k e|I2|(ε−π

2 )|yl|(
√
2π)|I2|

+ · · ·

+ e|zl|
δ0

(
Nt∑
p=1

|ct,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣it,k e|It|(ε−π

2 )|yl|(
√
2π)|It|

≤ e(1+ε1)
δ0 |yl|δ0

(
N1∑
p=1

|c1,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i1,k e|I1|(ε−π

2 )|yl|(
√
2π)|I1|

+ e(1+ε1)
δ0 |yl|δ0

(
N2∑
p=1

|c2,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i2,k e|I2|(ε−π

2 )|yl|(
√
2π)|I2|

+ · · ·

+ e(1+ε1)
δ0 |yl|δ0

(
Nt∑
p=1

|ct,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣it,k e|It|(ε−π

2 )|yl|(
√
2π)|It|

→ 0 as l → +∞.

This is a contradiction.

Case 2. Suppose that

H(zl)aI0(zl, ζ(zl), ζ
′(zl), . . . , ζ

(m)(zl))(41)

=

N0∑
p=1

H0,p(zl)ζ
i0,p,0(zl)(ζ

′(zl))
i0,p,1 · · · (ζ(m)(zl))

i0,p,m → 0

as zl =
3
4 + yl → ∞. We consider the following two subcases:

Subcase 2.1. Suppose that (41) holds and there exists an infinite subse-
quence of the infinite sequence {zl}, say itself, such that

H(zl)aI0(zl, ζ(zl), ζ
′(zl), . . . , ζ

(m)(zl))(42)

=

N0∑
p=1

H0,p(zl)ζ
i0,p,0(zl)(ζ

′(zl))
i0,p,1 · · · (ζ(m)(zl))

i0,p,m ̸= 0

for each positive integer l.
First of all, we use the lines of Case 1 to get (40). By (40) and (42) we have

0 <

∣∣∣∣∣
N0∑
p=1

H0,p(zl)ζ
i0,p,0(zl)(ζ

′(zl))
i0,p,1 · · · (ζ(m)(zl))

i0,p,m

∣∣∣∣∣(43)
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≤ e(1+ε1)
δ0 |yl|δ0

(
N1∑
p=1

|c1,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i1,k e|I1|(ε−π

2 )|yl|(
√
2π)|I1|

+ e(1+ε1)
δ0 |yl|δ0

(
N2∑
p=1

|c2,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i2,k e|I2|(ε−π

2 )|yl|(
√
2π)|I2|

+ · · ·

+ e(1+ε1)
δ0 |yl|δ0

(
Nt∑
p=1

|ct,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣it,k e|It|(ε−π

2 )|yl|(
√
2π)|It|

as l → +∞. By (34) and the equality in (42) we deduce

H(zl)aI0(zl, ζ(zl), ζ
′(zl), . . . , ζ

(m)(zl))(44)

=

N0∑
p=1

H0,p(zl)ζ
i0,p,0(zl)(ζ

′(zl))
i0,p,1 · · · (ζ(m)(zl))

i0,p,m

=

N0∑
p=1

H0,p(zl)b0,p(zl)

=

N0∑
p=1

H0,p(zl)c0,p(1 + o(1))

with

(45) b0,p(zl) = ζi0,p,0(zl)(ζ
′(zl))

i0,p,1 · · · (ζ(m)(zl))
i0,p,m = c0,p(1 + o(1))

as l → +∞. For a large fixed positive integer l, by (28) and (44) we can see

that
∑N0

p=1 H0,p(z)b0,p(zl) is an entire function in z ∈ C. Moreover, it follows

by (42), (44) and (45) that

(46)

N0∑
p=1

H0,p(zl)b0,p(zl) ̸= 0,

which implies that

(47)

N0∑
p=1

H0,p(z)b0,p(zl) ̸≡ 0 in C.

By (47) we can see that there exists an integer m0 and there exists a finite

non-zero complex number A0 such that A0z
m0

(∑N0

p=1 b0,p(zl)H0,p(z)
)

is an

entire function in z ∈ C and such that

(48) lim
z→0

A0z
m0

(
N0∑
p=1

b0,p(zl)H0,p(z)

)
= 1
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and

(49) A0z
m0

l

(
N0∑
p=1

b0,p(zl)H0,p(zl)

)
̸= 0,∞

for the large positive integer l. By (48), (49), Lemma 2.4 and the obtained

result that A0z
m0

(∑N0

p=1 b0,p(zl)H0,p(z)
)

is an entire function in z ∈ C, we
can see that for the large positive integer l and a small positive number ε
satisfying 0 < ε < 3e

2 , we have for R = 2|zl| that

log

∣∣∣∣∣A0z
m0

l

(
N0∑
p=1

b0,p(zl)H0,p(zl)

)∣∣∣∣∣(50)

> −
(
2 + log

3e

2ε

)
logM

(
2eR,A0z

m0

(
N0∑
p=1

b0,p(zl)H0,p(z)

))

for the large positive integer l. By (35), (45), (49) and (50) we deduce

log
1∣∣∣∣∣ N0∑

p=1
b0,p(zl)H0,p(zl)

∣∣∣∣∣
+ log

∣∣∣∣ 1A0

∣∣∣∣−m0 log |zl|(51)

= log
1∣∣∣∣∣A0z

m0

l

(
N0∑
p=1

b0,p(zl)H0,p(zl)

)∣∣∣∣∣
<

(
2 + log

3e

2ε

)
logM

(
2eR,A0z

m0

(
N0∑
p=1

b0,p(zl)H0,p(z)

))

=

(
2 + log

3e

2ε

)
log

{
max

|z|=2eR

{∣∣∣∣∣A0z
m0

(
N0∑
p=1

b0,p(zl)H0,p(z)

)∣∣∣∣∣
}}

≤
(
2 + log

3e

2ε

)
log

(
|A0||zl|m0 max

|z|=2eR

{∣∣∣∣∣
N0∑
p=1

b0,p(zl)H0,p(z)

∣∣∣∣∣
})

≤
(
2 + log

3e

2ε

)
log

(
|A0||zl|m0

(
N0∑
p=1

|b0,p(zl)|M(2eR,H0,p)

))

≤
(
2 + log

3e

2ε

)
log

(
|A0||zl|m0

(
N0∑
p=1

|2c0,p|M(2eR,H0,p)

))

≤
(
2 + log

3e

2ε

)
log

(
|A0||zl|m0

(
e(2eR)δ0

N0∑
p=1

|2c0,p|

))
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=

(
2 + log

3e

2ε

)
log

(
|A0||zl|m0

(
e(4e|zl|)

δ0

N0∑
p=1

|2c0,p|

))

=

(
2 + log

3e

2ε

)
(4e|zl|)δ0 + |m0|

(
2 + log

3e

2ε

)
log |zl|+O(1)

for the large positive integer l. By (39) and (51) we have

log
1∣∣∣∣∣ N0∑

p=1
b0,p(zl)H0,p(zl)

∣∣∣∣∣
(52)

≤
(
2 + log

3e

2ε

)
(4e|zl|)δ0 + |m0|

(
3 + log

3e

2ε

)
log |zl|+O(1)

≤
(
2 + log

3e

2ε

)
(4e)δ0(1 + ε1)

δ0 |yl|δ0 + |m0|
(
3 + log

3e

2ε

)
log |zl|+O(1)

= B1|yl|δ0 +B2 log |zl|+B3

for the large positive integer l. Here B3 is a sufficiently large positive constant,
B1 and B2 are also positive constants that satisfy

B1 =

(
2 + log

3e

2ε

)
(4e)δ0(1 + ε1)

δ0 and B2 = |m0|
(
3 + log

3e

2ε

)
,

respectively. By (52) we have

(53)
1∣∣∣∣∣ N0∑

p=1
b0,p(zl)H0,p(zl)

∣∣∣∣∣
≤ eB3 |zl|B2eB1|yl|δ0

for the large positive integer l.
By dividing two sides of the second inequality of (43) by∣∣∣∣∣

N0∑
p=1

b0,p(zl)H0,p(zl)

∣∣∣∣∣ ,
we have by (53), the second equality of (44) and the result 0 < δ0 < 1 that

1 ≤
e(1+ε1)

δ0 |yl|δ0

(
N1∑
p=1

|c1,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i1,k e|I1|(ε−π

2 )|yl|(
√
2π)|I1|

N0∑
p=1

b0,p(zl)H0,p(zl)

+

e(1+ε1)
δ0 |yl|δ0

(
N2∑
p=1

|c2,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i2,k e|I2|(ε−π

2 )|yl|(
√
2π)|I2|

N0∑
p=1

b0,p(zl)H0,p(zl)

+ · · ·
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+

e(1+ε1)
δ0 |yl|δ0

(
Nt∑
p=1

|ct,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣it,k e|It|(ε−π

2 )|yl|(
√
2π)|It|

N0∑
p=1

b0,p(zl)H0,p(zl)

≤ e(1+ε1)
δ0 |yl|δ0

(
N1∑
p=1

|c1,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i1,k e|I1|(ε−π

2 )|yl|(
√
2π)|I1|

× eB3 |zl|B2eB1|yl|δ0

+ e(1+ε1)
δ0 |yl|δ0

(
N2∑
p=1

|c2,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣i2,k e|I2|(ε−π

2 )|yl|(
√
2π)|I2|

× eB3 |zl|B2eB1|yl|δ0 + · · ·

+ e(1+ε1)
δ0 |yl|δ0

(
Nt∑
p=1

|ct,p|

)
n∏

k=1

∣∣∣(log zl)k (1 + o(1))
∣∣∣it,k e|It|(ε−π

2 )|yl|(
√
2π)|It|

× eB3 |zl|B2eB1|yl|δ0 → 0 as l → +∞.

This is a contradiction.

Subcase 2.2. Suppose that the infinite sequence of {zl} is a zero-sequence
of the meromorphic function HaI0(z, ζ, ζ

′, . . . , ζ(m)) at most finitely many ex-
ceptions of the points of {zl} such that they satisfy (41). Without loss of
generality, we suppose that the infinite sequence of {zl} is a zero-sequence of
the meromorphic function HaI0(z, ζ, ζ

′, . . . , ζ(m)). Then,

H(zl)aI0(zl, ζ(zl), ζ
′(zl), . . . , ζ

(m)(zl))(54)

=

N0∑
p=1

H0,p(zl)ζ
i0,p,0(zl)(ζ

′(zl))
i0,p,1 · · · (ζ(m)(zl))

i0,p,m = 0.

By (54), the inequality of (30) and the uniqueness theorem of analytic functions
(cf. [1, p. 127]) we can see that there exists an infinite sequence of {ẑl} ⊂ C,
and there exist two infinite decreasing sequences of positive numbers of {δl}
and {εl} such that

(55) δl → 0 and εl → 0,

and

H(ẑl)aI0(ẑl, ζ(ẑl), ζ
′(ẑl), . . . , ζ

(m)(ẑl))(56)

=

N0∑
p=1

H0,p(ẑl)ζ
i0,p,0(ẑl)(ζ

′(ẑl))
i0,p,1 · · · (ζ(m)(ẑl))

i0,p,m → 0

as l → +∞, and such that

(57) 0 < |ẑl − zl| < δl,
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H(ẑl)aI0(ẑl, ζ(ẑl), ζ
′(ẑl), . . . , ζ

(m)(ẑl))(58)

=

N0∑
p=1

H0,p(ẑl)ζ
i0,p,0(ẑl)(ζ

′(ẑl))
i0,p,1 · · · (ζ(m)(ẑl))

i0,p,m ̸= 0

and

(59)

∣∣∣∣∣ζij,p,0(ẑl)
m∏

k=1

(ζ(k)(ẑl))
ij,p,k − ζij,p,0(zl)

m∏
k=1

(ζ(k)(zl))
ij,p,k

∣∣∣∣∣ < εl

with 0 ≤ j ≤ t, 1 ≤ p ≤ Nj and j, p ∈ Z+ ∪ {0} for the large positive integer
l. Moreover, by (34) and (59) we deduce for 0 ≤ j ≤ t, 1 ≤ p ≤ Nj and
j, p ∈ Z+ ∪ {0} that

(60) ζij,p,0(ẑl)(ζ
′(ẑl))

ij,p,1 · · · (ζ(m)(ẑl))
ij,p,m → cj,p as l → +∞.

Next we replace the infinite sequence of {ẑl} instead of the infinite sequence
of {zl}, and use (55)-(60) and the lines of the reasoning of Subcase 2.1, we can
get a contradiction. Therefore, we prove

(61) aI0(z, ζ, ζ
′, . . . , ζ(m)) = 0

identically in C. By substituting (61) into (21), we can see that (21) can be
rewritten into

0 = aI1

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=1

(
Γ(k)

Γ

)i1,k

Γ|I1|(62)

+ aI2

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=1

(
Γ(k)

Γ

)i2,k

Γ|I2| + · · ·

+ aIt

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=1

(
Γ(k)

Γ

)it,k

Γ|It|

identically in z ∈ C.
By (62) and the supposition 0 = |I0| < |I1| < · · · < |It| we deduce

0 = aI1

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=1

(
Γ(k)

Γ

)i1,k

(63)

+ aI2

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=1

(
Γ(k)

Γ

)i2,k

Γ|I2|−|I1| + · · ·

+ aIt

(
z, ζ, ζ ′, . . . , ζ(m)

) n∏
k=1

(
Γ(k)

Γ

)it,k

Γ|It|−|I1|

identically in z ∈ C. By (37) and (63) we deduce

0 = aI1

(
z, ζ, ζ ′, . . . , ζ(m)

)
(log z)

n∑
k=1

ki1,k
(1 + o(1))(64)
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+ aI2

(
z, ζ, ζ ′, . . . , ζ(m)

)
(log z)

n∑
k=1

ki2,k
Γ|I2|−|I1|(1 + o(1)) + · · ·

+ aIt

(
z, ζ, ζ ′, . . . , ζ(m)

)
(log z)

n∑
k=1

kit,k
Γ|It|−|I1|(1 + o(1)),

uniformly for any small ε > 0 and for all z ∈ C \ {z : | arg z−π| ≤ ε} such that
z → ∞.

Next we use (64) and the lines of the reasoning in Case 2 to deduce

(65) aI1

(
z, ζ, ζ ′, . . . , ζ(m)

)
= 0

identically in C. By substituting (65) into (64) we have

0 = aI2

(
z, ζ, ζ ′, . . . , ζ(m)

)
(log z)

n∑
k=1

ki2,k
Γ|I2|−|I1|(1 + o(1)) + · · ·(66)

+ aIt

(
z, ζ, ζ ′, . . . , ζ(m)

)
(log z)

n∑
k=1

kit,k
Γ|It|−|I1|(1 + o(1)),

uniformly for any small ε > 0 and for all z ∈ C \ {z : | arg z−π| ≤ ε} such that
z → ∞.

Next we use the supposition 0 = |I0| < |I1| < |I2| < · · · < |It| and the
above same argument to deduce that all the coefficients aIt

(
z, ζ, ζ ′, . . . , ζ(m)

)
with 2 ≤ j ≤ t in (66) are identically zero in C. This together with (61) and
(65) implies that all the coefficients aIt

(
z, ζ, ζ ′, . . . , ζ(m)

)
with 0 ≤ j ≤ t and

j ∈ Z in (20) are identically zero in C. Combining this with Lemma 2.9 and
the result that aIj (z, u0, u1, . . . , um) with 0 ≤ j ≤ t is a polynomial in the
variables u0, u1, . . . , um with coefficients being meromorphic functions of order
less than one, we deduce that all the coefficients aIj with 0 ≤ j ≤ t and j ∈ Z
in (18) are identically zero. This implies that the polynomial P is identically
zero. Theorem 1.9 is thus completely proved.
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