• Title/Summary/Keyword: Riemann surface

Search Result 33, Processing Time 0.024 seconds

Meromorphic functions, divisors, and proective curves: an introductory survey

  • Yang, Ko-Choon
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.569-608
    • /
    • 1994
  • The subject matter of this survey has to do with holomorphic maps from a compact Riemann surface to projective space, which are also called algebrac curves; the theory we survey lies at the crossroads of function theory, projective geometry, and commutative algebra (although we should mention that the present survey de-emphasizes the algebraic aspect). Algebraic curves have been vigorously and continuously investigated since the time of Riemann. The reasons for the preoccupation with algebraic curves amongst mathematicians perhaps have to do with-other than the usual usual reason, namely, the herd mentality prompting us to follow the leads of a few great pioneering methematicians in the field-the fact that algebraic curves possess a certain simple unity together with a rich and complex structure. From a differential-topological standpoint algebraic curves are quite simple as they are neatly parameterized by a single discrete invariant, the genus. Even the possible complex structures of a fixed genus curve afford a fairly complete description. Yet there are a multitude of diverse perspectives (algebraic, function theoretic, and geometric) often coalescing to yield a spectacular result.

  • PDF

A SURVEY OF BLOCH CONSTANTS

  • An, Jong-Su
    • The Pure and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 1995
  • We begin with a brief survey of some of the known results dealing with Bloch constants. Bloch's theorem asserts that there is a constant B$\_$1.C/(1, 0) such that if f is holomorphic in the open unit disk D and normalized by │f'(0)│$\geq$1, then the Riemann surface of f contains an unramified disk of radius at least B$\_$1.C/(1, 0) (see[7,p.14]).(omitted)

  • PDF

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.

Development of a Numerical Model of Shallow-Water Flow using Cut-cell System (분할격자체계를 이용한 천수흐름 수치모형의 개발)

  • Kim, Hyung-Jun;Lee, Seung-Oh;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.91-100
    • /
    • 2008
  • Numerical implementation with a Cartesian cut-cell method is conducted in this study. A Cartesian cut-cell method is an easy and efficient mesh generation methodology for complex geometries. In this method, a background Cartesian grid is employed for most of computational domain and a cut-cell grid is applied for the peculiar grids where the flow characteristics are changed such as solid boundary to enhance the accuracy, applicability and efficiency. Accurate representation of complex geometries can be obtained by using the cut-cell method. The cut-cell grids are constructed with irregular meshes which have various shape and size. Therefore, the finite volume method is applied to numerical discretization on a irregular domain. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. The weighted average flux method applied on the Cartesian cut cell grid for stabilization of the numerical results. To validate the numerical model using the Cartesian cut-cell grids, the model is applied to the rectangular tank problem of which the exact solutions exist. As a comparison of numerical results with the analytical solutions, the numerical scheme well represents flow characteristics such as free surface elevation and velocities in x-and y-directions in a rectangular tank with the Cartesian and cut-cell grids.

Contour Integral Method for Crack Detection

  • Kim, Woo-Jae;Kim, No-Nyu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.665-670
    • /
    • 2011
  • In this paper, a new approach to detect surface cracks from a noisy thermal image in the infrared thermography is presented using an holomorphic characteristic of temperature field in a thin plate under steady-state thermal condition. The holomorphic function for 2-D heat flow field in the plate was derived from Cauchy Riemann conditions to define a contour integral that varies according to the existence and strength of a singularity in the domain of integration. The contour integral at each point of thermal image eliminated the temperature variation due to heat conduction and suppressed the noise, so that its image emphasized and highlighted the singularity such as crack. This feature of holomorphic function was also investigated numerically using a simple thermal field in the thin plate satisfying the Laplace equation. The simulation results showed that the integral image selected and detected the crack embedded artificially in the plate very well in a noisy environment.

REGULAR MAPS-COMBINATORIAL OBJECTS RELATING DIFFERENT FIELDS OF MATHEMATICS

  • Nedela, Roman
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.1069-1105
    • /
    • 2001
  • Regular maps and hypermaps are cellular decompositions of closed surfaces exhibiting the highest possible number of symmetries. The five Platonic solids present the most familar examples of regular maps. The gret dodecahedron, a 5-valent pentagonal regular map on the surface of genus 5 discovered by Kepler, is probably the first known non-spherical regular map. Modern history of regular maps goes back at least to Klein (1878) who described in [59] a regular map of type (3, 7) on the orientable surface of genus 3. In its early times, the study of regular maps was closely connected with group theory as one can see in Burnside’s famous monograph [19], and more recently in Coxeter’s and Moser’s book [25] (Chapter 8). The present-time interest in regular maps extends to their connection to Dyck\`s triangle groups, Riemann surfaces, algebraic curves, Galois groups and other areas, Many of these links are nicely surveyed in the recent papers of Jones [55] and Jones and Singerman [54]. The presented survey paper is based on the talk given by the author at the conference “Mathematics in the New Millenium”held in Seoul, October 2000. The idea was, on one hand side, to show the relationship of (regular) maps and hypermaps to the above mentioned fields of mathematics. On the other hand, we wanted to stress some ideas and results that are important for understanding of the nature of these interesting mathematical objects.

  • PDF

Effect of Corrected Hydrostatic Pressure in Shallow-Water Flow over Large Slope (대경사를 지나는 천수 흐름에서 수정된 정수압의 효과)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1177-1185
    • /
    • 2014
  • This study suggests a new hydrostatic pressure distribution corrected for nonuniform flow over a channel of large slope. For analyzing shallow-water flows over large slope accurately, it is developed a finite-volume model incorporating the pressure distribution to the shallow water equations. Traveling speed of the hydraulic jump downstream a parabolic bump in the drain case is quite reduced by the weakened bottom gradient source term in the model with the pressure correction. In simulating the dam-break flow over a triangular sill, it is identified that the model with pressure correction could capture the water surface by the digital imaging measurements more than the model without that. Due to the pressure correction decreasing the reflected flows on and increasing overflows over the sill, there are good agreements in the experiment and the simulation with that. Therefore, this model is expected to be applied to such practical problems as flows in the spillway of dam or run-up on the beach.

Issues and Solutions for the Numerical Analysis of High Mach Number Flow over a Blunt-Body (무딘 물체 주위 고마하수 유동해석의 문제점과 해결책)

  • 원수희;정인석;최정열;신재렬
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.18-28
    • /
    • 2006
  • Numerical analysis of high Mach number flow over a blunt-body poses many difficulties and various numerical schemes have been suggested to overcome the problems. However, the new schemes were used in the limited fields of applications because of the lack of field experience compared to more than 20 years old numerical schemes and the intricacies of modifying the existing code for the special application. In this study, some tips to overcome the numerical difficulties in solving the 3D high-Mach number flows by using Roe's scheme, the most widely used for the past 25 years and adopted in many commercial codes, were examined without a correction of the algorithm or a modification of the CFD code. The well-known carbuncle phenomena of Riemann solvers could be remedied even for an extremely high Mach number by applying the entropy fixing function and a unphysical solution could be overcome by applying a simply modified initial condition regardless of the entropy fixing and grid configuration.

Depth Averaged Numerical Model for Sediment Transport by Transcritical Flows (급변류에 의한 하상변동 예측을 위한 수심적분 수치모형)

  • Kim, Boram;Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1061-1066
    • /
    • 2014
  • A stable second-order finite volume method was proposed to predict sediment transport under rapidly varied flow conditions such as transcritical flow. For the use under unsteady flow conditions, a sediment transport model was coupled with shallow water equations. HLLC approximate Riemann solver based on a monotone upstream-centered schemes for conservation laws (MUSCL) reconstruction was used for the computation of the flux terms. From the comparisons of dam break flow experiments on erodible beds in one- and two-dimensional channels, good agreements were obtained when proper parameters were provided. Lastly, dam surface erosion problem by overtopped water was simulated. Overall, the numerical solutions showed reasonable results, which demonstrated that the proposed numerical scheme could provide stable and physical results in the cases of subcritical and supercritical flow conditions.

A NOTE ON INDECOMPOSABLE 4-MANIFOLDS

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.817-828
    • /
    • 2005
  • In this note we show that there is an anti-symplectic involution $\sigma\;:\;X\;\to\;X$ on a simply-connected, closed, non-Kahler and symplectic 4-manifold X with a disjoint union of Riemann surfaces ${\amalg}^n_{i=1}{\Sigma}_i,\;n\;{\ge}\;2$ as a fixed point set. Also we show that its quotient X/$\sigma$ is homeomorphic to $\mathbb{CP}^2{\sharp}r\mathbb{CP}^2$ but not diffeomorphic to $\mathbb{CP}^2{\sharp}r\mathbb{CP}^2,\;r\;=\;b_2^-(X/{\sigma})$.