DOI QR코드

DOI QR Code

Depth Averaged Numerical Model for Sediment Transport by Transcritical Flows

급변류에 의한 하상변동 예측을 위한 수심적분 수치모형

  • Kim, Boram (Department of Civil Engineering, University of Seoul) ;
  • Kim, Dae-Hong (Department of Civil Engineering, University of Seoul)
  • 김보람 (서울시립대학교 토목공학과) ;
  • 김대홍 (서울시립대학교 토목공학과)
  • Received : 2014.08.20
  • Accepted : 2014.10.15
  • Published : 2014.11.30

Abstract

A stable second-order finite volume method was proposed to predict sediment transport under rapidly varied flow conditions such as transcritical flow. For the use under unsteady flow conditions, a sediment transport model was coupled with shallow water equations. HLLC approximate Riemann solver based on a monotone upstream-centered schemes for conservation laws (MUSCL) reconstruction was used for the computation of the flux terms. From the comparisons of dam break flow experiments on erodible beds in one- and two-dimensional channels, good agreements were obtained when proper parameters were provided. Lastly, dam surface erosion problem by overtopped water was simulated. Overall, the numerical solutions showed reasonable results, which demonstrated that the proposed numerical scheme could provide stable and physical results in the cases of subcritical and supercritical flow conditions.

천이류와 같은 급변류에 의한 하상변동을 예측하기 위한 이차정확도의 유한체적법 모형을 제시하였다. 부정류 조건하에서의 유사이송과 하상변동문제에 적용하기 위하여 유사이송모형을 천수방정식과 연계하였다. 지배방정식은 MUSCL 기반의 유한체적법을 이용하였고, 계산요소간 흐름률은 HLLC approximate Riemann solver를 이용하여 계산하였다. 일차원과 이차원 수로에서의 댐붕괴파에 의한 하상변동문제와 월류로 인한 하류부 댐사면의 침식문제에 적용한 결과, 적정한 매개변수를 이용하는 경우에 전반적으로 정확한 수치모의 결과를 얻을 수 있었다. 또한 전반적인 계산결과는 수치적으로 안정적이고 물리적으로 타당한 결과를 나타내었고, 이로부터 제시된 수치모의 기법이 상류와 사류조건하에서의 하상변동 문제에 적용이 가능할 것으로 판단된다.

Keywords

References

  1. Cao, Z., Pender, G., Wallis, S., and Carling, P. (2004). "Computational dam-break hydraulics over mobile sediment bed." Journal of Hydraulic Engineering, Vol. 130, pp. 689-703. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(689)
  2. Cho, Y.S. (1995). Numerical simulations of tsunami propagation and run-up, PhD thesis, School of Civil and Environmental Engineering, Cornell University, Ithaca.
  3. Fraccarollo, L., and Capart, H. (2002). "Riemann wave description of erosional dam-break flows." Journal of Fluid Mechanics, Vol. 461, pp. 183-228.
  4. Goutiere, L., Soares-Frazao, S., and Zech, Y. (2012). "Dam-break flow on mobile bed in a channel with a sudden widening: experimental data." Journal of Hydraulic Research, Vol. 49, pp. 367-371.
  5. Jang, C.L. (2014). "Numerical Experiments of the Behavior of Bars in the Channels with Periodic Variable Width." Journal of Korea Water Resources Association, Vol. 47, No. 1, pp. 37-47. https://doi.org/10.3741/JKWRA.2014.47.1.37
  6. Kim, D.H., and Lee, S.O. (2012) "Stable Numerical Model for Transcritical Flow and Sediment Transport on Uneven Bathymetry." Journal of Hydraulic Engineering, Vol. 138, pp. 46-56. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000473
  7. Murillo, J., and Garcia-Navarro, P. (2010). "An Exnerbased coupled model for two-dimensional transient flow over erodible bed." Journal Computational Physics, Vol. 229, pp. 8704-8732. https://doi.org/10.1016/j.jcp.2010.08.006
  8. Palumbo, A., Soares-Frazao, S., Goutiere, L., Pianese, D., and Zech, Y. (2008). Dam-break flowon mobile bed in a channel with a sudden enlargement. Proceedings of River Flow 2008 International Conference. on Fluvial Hydraulics, Vol. 1, M. Altinakar et al., eds., International Association for Hydro-Environment Engineering and Research, Madrid, Spain, pp. 645-654.
  9. Soares-Frazao, S., and Zech, Y. (2010). "HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallowwater flow on erodible bed." International Journal for Numerical Methods in Fluids, Vol. 66, pp. 1019-1036.
  10. Tingsanchali, T., and Chinnarasri, C. (2001) "Numerical modelling of dam failure due to flow overtopping." Hydrological Sciences-Journaldes Sciences Hydrologiques, Vol. 46, pp. 113-130. https://doi.org/10.1080/02626660109492804
  11. Toro, E.F. (1999). Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag.
  12. Toro, E.F. (2002). Shock-capturing methods for freesurface shallow flows, Wiley, Hoboken, NJ.
  13. Wu, W., and Wang, S.Y. (2007) "One-Dimensional Modeling of Dam-Break Flow over Movable Beds." Journal of Hydraulic Engineering, Vol. 133, pp. 48-58. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(48)

Cited by

  1. Channel Geometry Controls Downstream Lags in Sediment Rating Curves vol.144, pp.4, 2018, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001418