• 제목/요약/키워드: Riemann's $\zeta$-function

검색결과 24건 처리시간 0.02초

ASYMPTOTIC BEHAVIOR OF THE INVERSE OF TAILS OF HURWITZ ZETA FUNCTION

  • Lee, Ho-Hyeong;Park, Jong-Do
    • 대한수학회지
    • /
    • 제57권6호
    • /
    • pp.1535-1549
    • /
    • 2020
  • This paper deals with the inverse of tails of Hurwitz zeta function. More precisely, for any positive integer s ≥ 2 and 0 ≤ a < 1, we give an algorithm for finding a simple form of fs,a(n) such that $$\lim_{n{\rightarrow}{\infty}}\{\({\sum\limits_{k=n}^{\infty}}{\frac{1}{(k+a)^s}}\)^{-1}-f_{s,a}(n)\}=0$$. We show that fs,a(n) is a polynomial in n-a of order s-1. All coefficients of fs,a(n) are represented in terms of Bernoulli numbers.

EVALUATION OF CERTAIN ALTERNATING SERIES

  • Choi, Junesang
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.263-273
    • /
    • 2014
  • Ever since Euler solved the so-called Basler problem of ${\zeta}(2)=\sum_{n=1}^{\infty}1/n^2$, numerous evaluations of ${\zeta}(2n)$ ($n{\in}\mathbb{N}$) as well as ${\zeta}(2)$ have been presented. Very recently, Ritelli [61] used a double integral to evaluate ${\zeta}(2)$. Modifying mainly Ritelli's double integral, here, we aim at evaluating certain interesting alternating series.

EULER SUMS EVALUATABLE FROM INTEGRALS

  • Jung, Myung-Ho;Cho, Young-Joon;Choi, June-Sang
    • 대한수학회논문집
    • /
    • 제19권3호
    • /
    • pp.545-555
    • /
    • 2004
  • Ever since the time of Euler, the so-called Euler sums have been evaluated in many different ways. We give here a proof of the classical Euler sum by following Lewin's method. We also consider some related formulas involving Euler sums, which are evaluatable from some known definite integrals.

수학사적 관점에서 오일러 및 베르누이 수와 리만 제타함수에 관한 탐구 (On the historical investigation of Bernoulli and Euler numbers associated with Riemann zeta functions)

  • 김태균;장이채
    • 한국수학사학회지
    • /
    • 제20권4호
    • /
    • pp.71-84
    • /
    • 2007
  • 베르누이가 처음으로 자연수 k에 대하여 합 $S_n(k)=\sum_{{\iota}=1}^n\;{\iota}^k$에 관한 공식들을 유도하는 방법을 발견하였다([4]). 그 이후, 리만 제타함수와 관련된 베르누이 수와 오일러 수에 관한 성질들이 연구되어왔다. 최근에 김태균은 $\mathbb{Z}_p$상에서 p-진 q-적분과 관련된 확장된 q-베르누이 수와 q-오일러 수, 연속된 q-정수의 멱수의 합에 관한 성질들을 밝혔다. 본 논문에서는 연속된 q-정수의 멱수의 합에 관한 역사적 배경과 발달과정을 고찰하고, 오일러 및 베르누이 수와 관련된 리만 제타함수가 해석적 함수로써 값을 가지는 문제를 q-확장된 부분의 이론으로 연구되어온 q-오일러 제타함수에 대해 체계적으로 논의한다.

  • PDF

CERTAIN INTEGRAL REPRESENTATIONS OF GENERALIZED STIELTJES CONSTANTS γk(a)

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • 제31권1호
    • /
    • pp.41-53
    • /
    • 2015
  • A large number of series and integral representations for the Stieltjes constants (or generalized Euler-Mascheroni constants) ${\gamma}_k$ and the generalized Stieltjes constants ${\gamma}_k(a)$ have been investigated. Here we aim at presenting certain integral representations for the generalized Stieltjes constants ${\gamma}_k(a)$ by choosing to use four known integral representations for the generalized zeta function ${\zeta}(s,a)$. As a by-product, our main results are easily seen to specialize to yield those corresponding integral representations for the Stieltjes constants ${\gamma}_k$. Some relevant connections of certain special cases of our results presented here with those in earlier works are also pointed out.

A NUMERICAL INVESTIGATION ON THE STRUCTURE OF THE ROOT OF THE (p, q)-ANALOGUE OF BERNOULLI POLYNOMIALS

  • Ryoo, Cheon Seoung
    • Journal of applied mathematics & informatics
    • /
    • 제35권5_6호
    • /
    • pp.587-597
    • /
    • 2017
  • In this paper we define the (p, q)-analogue of Bernoulli numbers and polynomials by generalizing the Bernoulli numbers and polynomials, Carlitz's type q-Bernoulli numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with (p, q)-analogue of Bernoulli numbers and polynomials. Finally, we investigate the zeros of the (p, q)-analogue of Bernoulli polynomials by using computer.

SOME IDENTITIES INVOLVING THE LEGENDRE'S CHI-FUNCTION

  • Choi, June-Sang
    • 대한수학회논문집
    • /
    • 제22권2호
    • /
    • pp.219-225
    • /
    • 2007
  • Since the time of Euler, the dilogarithm and polylogarithm functions have been studied by many mathematicians who used various notations for the dilogarithm function $Li_2(z)$. These functions are related to many other mathematical functions and have a variety of application. The main objective of this paper is to present corrected versions of two equivalent factorization formulas involving the Legendre's Chi-function $\chi_2$ and an evaluation of a class of integrals which is useful to evaluate some integrals associated with the dilogarithm function.

ON BERNOULLI NUMBERS

  • Kim, Min-Soo;Son, Jin-Woo
    • 대한수학회지
    • /
    • 제37권3호
    • /
    • pp.391-410
    • /
    • 2000
  • In the complex case, we construct a q-analogue of the Riemann zeta function q(s) and a q-analogue of the Dirichlet L-function L(s,X), which interpolate the 1-analogue Bernoulli numbers. Using the properties of p-adic integrals and measures, we show that Kummer type congruences for the q-analogue Bernoulli numbers are the generalizations of the usual Kummer congruences for the ordinary Bernoulli numbers. We also construct a q0analogue of the p-adic L-function Lp(s, X;q) which interpolates the q-analogue Bernoulli numbers at non positive integers.

  • PDF

EULER SUMS OF GENERALIZED HYPERHARMONIC NUMBERS

  • Xu, Ce
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1207-1220
    • /
    • 2018
  • The generalized hyperharmonic numbers $h^{(m)}_n(k)$ are defined by means of the multiple harmonic numbers. We show that the hyperharmonic numbers $h^{(m)}_n(k)$ satisfy certain recurrence relation which allow us to write them in terms of classical harmonic numbers. Moreover, we prove that the Euler-type sums with hyperharmonic numbers: $$S(k,m;p):=\sum\limits_{n=1}^{{\infty}}\frac{h^{(m)}_n(k)}{n^p}(p{\geq}m+1,\;k=1,2,3)$$ can be expressed as a rational linear combination of products of Riemann zeta values and harmonic numbers. This is an extension of the results of Dil [10] and $Mez{\ddot{o}}$ [19]. Some interesting new consequences and illustrative examples are considered.