Commun. Korean Math. Soc. 22 (2007), No. 2, pp. 219-225

SOME IDENTITIES INVOLVING THE LEGENDRE’S
CHI-FUNCTION

JUNESANG CHOI

ABSTRACT. Since the time of Euler, the dilogarithm and polylogarithm
functions have been studied by many mathematicians who used various
notations for the dilogarithm function Liz(z). These functions are related
to many other mathematical functions and have a variety of application.
The main objective of this paper is to present corrected versions of two
equivalent factorization formulas involving the Legendre’s Chi-function
x2 and an evaluation of a class of integrals which is useful to evaluate
some integrals associated with the dilogarithm function.

1. Introduction and preliminaries

The dilogarithm function Lis(z) is defined by

o0 n

Lia(z):= ) 5 (2] <1)
(1.1) n=1
=_/z fog(1 —t) it
0 t

As noted in Lewin |b], the series in (1.1) was discussed by Euler in 1768, the
function Lia(z) was later called the dilogarithm by Hill in 1828.
Polylogarithm functions Li,(z) (n € N:= {1, 2, 3, ...}) are defined by

Lin(@)i=3 2= (2l <1 neN\{1})
(1.2) k=1

= /Oz Lin—1(t) %E (n e N\ {1, 2})

Since the time of Euler, the dilogarithm and polylogarithm functions have
been studied by many mathematicians who used various notations for Lis(z)
(see, for example, [7]). Lewin [6] has introduced the present convenient notation
Li,n(2) (n € N) for polylogarithm functions. Lewin [6] also has studied them
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extensively and remarked their relationships to other mathematical functions
and their applications to other research areas. Recently Bowman and David [2]
surveyed various results and conjectures concerning the multiple polylogarithms
of a generalized form of (1.2) and the multiple zeta function. Some integrals
related to polylogarithm functions have also been studied (see, for example,

(1], [4]).
Legendre [5] studied the function x2(x) defined by
x p2n—1 ) '
(13) XQ(.’L‘) = Z —(271—)5 = %LIQ(I) - %le(-—l‘) (—1 §_ x S 1),
n=1

which is called the Legendre’s chi-function. Lewin [6] noted that Legendre [5]
used the notation ¢(z) for the ya2{z). We recall here two known identities (see

[6, p- 19]):
z 14+t dt
0 e (i)

and

1- 2 1+
(1.5) X2 < :c) + x2(z) = T4 3 logz log .

1+z 8

Lewin also recorded two equivalent factorization formulas [6, p. 20, Equa-
tions (1.72) and (1.73)] for the Legendre’s chi-function x2 as follows:

(1.6) | |
n+1 [° 14t g% 1 —te 2nsT 1 —tednsi | dt

xa (2271) = / log H — . i e

2 0 1—tr=1 1+te 3nt1 14 te2ntt t

(2n+1) [Xz(w) - i X2 (we‘;"%) - i X2 (xezﬂl)}
r=1 r=1

]

and
Xz [t tan{(2n + 1)6}]
17”77'
= (2n+1) [Xz (itan8) +Z:1 X2 {ztan (2 -~ 9)}
_ ; X2 {itan (2;7::1 +6’)} — %— — i8log(itan b) + n_z.
(1.7)

M:

T

)

1 1
3 ] it 57‘7!‘ _9
12(2n+1 ) og{ zan<2n+1
1 1
2’I'7l' . 57’7{'
(2n+1 )log{ztan(2n+1+9)}]

+4(2n+1) 6 log [i tan {(2n + 1)8}].

+

+
=% 11
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Here we are aiming at presenting the corrected versions of the formulas (1.6)
and (1.7). We also give an evaluation of a class of integrals which is useful to
get some integral equations satisfied by the dilogarithm.

2. Corrected versions of (1.6) and (1.7)
We first recall four known factorization formulas (see [8, p. 4]): For n € N,

n

2rm
(2.1) 2t g2l — (g ) H <x2 — 2zy cos | + y2) ;

r=1

n

2
(2.2) N () H <x2 + 22y cos 2nr:1 + y2> ;

r=1

n—1

(23) @ -y =@-y)@+y) [] (s® 22y cos T+ 7))
r=1 n
- (2r — )m
2.4 2n 2n _ 2 9 _ 2 .
(2.4) "ty E(z + Y €08 g +y

To make our reasoning assure, we need to verify the formula (2.1). Indeed,
let 21 — ¢+l = (. Then (z/y)***! =1 and so we have

x:yei% (k=0,1,2,...,2n).

We thus see that

2n
gL g2l (g ) (x—yei;n#fﬁ
k=1
(2'5) i : 2k n s 2k
=(z—1y) H (z—ye’#ﬂ) H (x—yelﬁ) .
k=1 k=n+1

Now we transform the second product of (2.5) as follows:

2
n omik n _ 2mi(n—r41) n —2mik
(2.6) H (x—ye%ﬂ):H <x—ye Zn+1 )ZH (x—yezn+1>,
k=n+1 r=1 k=1

by letting r := k —n and k£ := n — r + 1 for the first and second equalities,
respectively.
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Substituting (2.6) for the second product in (2.5), we obtain

n n 3
Il g2t — (g ) H (z—yegf—jﬁ) H <x-—ye_z§ff>

k=1 k=1

n
- (x—y) H |:$L‘2 —zy <e2n+1 +e;721+11k) +y2]

e 2k
ol 2 2
=(z—y) II [x 2xyc032n+1+y],

which completes the proof of (2.1). Similarly we can prove the formulas (2.2),
(2.3), and (2.4).

Setting z = 1 and y = ¢ in (2.1) and (2.2), and applying the resulting
products and using (1.4), we get
(2.7)

2n+1 [° 1+ ¢\ dt
2n+1y _ 1 . —
X2 (GC ) 2 /0 0g (1 — t2n+1 t
M4l [T (14t B 14t 14te 2| dt
- log H 2mir. omir | 1
2 0 1-tr—1 1—tentt 1 —te Znt1 | ¢
pelt +Z X2 ( 622:}5) +Z X2 (xe"zz::rl)} .
r=1
We finally have a corrected version of (1.6):
(2.8)
2mir i 2wir
-I-Z X2 (:cein—ﬂ) +Z X2 (xe_m)] .
r=1

Since the product part of the integrand in (2.7) can easily be rewritten in
the form:

(2n+1)

x2 (1) = (2n + 1)

_@r=nmi @2r—=i
1+ 14t fp 1—te 791 1—te oo
1_ ¢2nt1 = 1—¢ — Gr-Dmi @r—1yni ?

=1 1+te” EFI 1+te Zn+T

(2.8) can be equivalently expressed as follows:

(2.9)
n (2r—1)=i n (2r—1)mi
ZX (Ie 2n+1 )—ZX2<:E€ 2n+1 ) .
r=1

r=1

X2 (1:2"“) (2n+1)

Now, setting z = ¢ tan8 in (1.5), we obtain (see [6, p. 20])

(2.10) x2 (€7} = —x2 (i tan @) + ? +i8 log (i tan ) .
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~2 in (2.8) and using (2.10), we get a corrected version of (1.7):

x2 [itan {(2n + 1)8}]

: = , wr
x2 (itan ) +Z X2 {ztan (9— 2n+1>}

r=1

Taking v = ¢

={(2n+1)

2

= ) ar 2 _ nw
-I-g)(z {ztan (9—{- 2n+1>}—§—2010g(1tan9)——21—
(2.11) " r ar
_21(9— 2n+1) log{ztan(ﬁ— 2n-|—1>}

o r ) nr
_Zz<9+ 2n+1) log{ztan<9+2n+1)}}

+ Zr8— +i(2n+1) 6 log[itan {(2n + 1)8}].

Remark. From (1.6) and (2.7), we see respectively that

L2+l 1 4¢
(2.12) T = 1 P

and
L+ 144

2.13 = (1),
(2.13) = g ()
where

n 11— 2¢ cos (2];;1) + ¢

pa(®) =]

r=1 1+ 2t cos (27’::_1) +¢2

and

an(t) = H

r—1 1 — 2t cos (2”—’"

It follows from (2.12) and (2.13) that p,(t) = g, (t) for every n € N. However, it
is easy to check that p(t) = ¢1(t) but pa(t) # g2(t). So we conclude that either
(2.12) or (2.13) is not correct. Since (2.13) has been verified in an assured way,
the formulas (1.6) and (1.7) should be corrected as (2.8) (or (2.9)) and (2.11),
respectively.

3. Evaluation of a class of integrals

Here, we evaluate a class of integrals of the form:

In(z) = /0 e " (logp)"dp (x> 0;n€N).
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We observe that

dn o0 oz o
In(z):%/o e P p™dp

a=0

dn
= — _(1+0‘)
— [r(l ta)z _
= Z < )I‘(” ®(1+ ) (log z)* =1+
k=0 a=0

= LS Lk (M) R 1) (log )
2 20 () 1) g

where I' denotes the well-known Gamma function (see [9, Chapter 1]).
We thus have
(3.1)

/0006 P% (log p)™ ‘i—é ( )]j‘(n k)( )(logm)k (@>0;n€N).

To list some special cases of (3.1) for small values of n € N, we first recall
the following known formula of evaluation of higher-order derivatives of the
Gamma function IT" (see [3, p. 12]):

(3.2)

P = -3 TP en o,

some special cases of which are given:

7T2 2

M) =-y IO =7 +% TP ="~ - -2¢@);
3t
2—0,
where ~ denotes the Euler-Mascheroni’s constant and {(s) is the Riemann zeta
function (see [9, Chapters 1 and 2]).
By means of (3.2), we give some explicit special cases of (3.1):

I‘(4)(1) =yt 272 +8v¢(3) +

b 1
/ e7P® logpdp = —= (v + log z);
0 T
* 2 1 [=* 2
/ e P* (logp)*dp = ~ {-—+(7+10g-’v) };
0 T 6
e 3 1 s 3
e P” (log p) dp=—— 24(3)+7(W+log:c)+(*v+logw) ;
0

/oo e P (logp)* dp = % {2 (y7® +4¢(3)) logz + n* (log z)* + (v + log z)*} .
0
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We conclude this section by giving a known integral formula associated the
dilogarithm function evaluated by the aid of some special cases of (3.1) (see {6,
p. 26, Eq. (1.108)]:

& 1 1
P Lig (1= =)+ —+ = 2l d
/0 e [12( p)+6+2(logp)] D

e v ¢ et—1 1 52
= 1 = =
. [/0 ; (v+ ogt)dt+2(’y+logac) + 12]

(3.3)
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