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ON THE ERROR TERM

IN THE PRIME GEODESIC THEOREM

Muharem Avdispahić and Dženan Gušić

Abstract. Taking the integrated Chebyshev-type counting function of
the appropriate order, we improve the error term in Park’s prime geodesic
theorem for hyperbolic manifolds with cusps. The obtained estimate co-

incides with the best known result in the Riemann surfaces case.

Let Γ be a discrete co-finite torsion free subgroup of G = SO0 (d, 1) satisfying
the condition Γ ∩ P = Γ ∩ N(P ) for P ∈ PΓ, where PΓ is the set of Γ-
conjugacy classes of Γ-cuspidal parabolic subgroups in G and N(P ) is the
unipotent part of P . Denote by K a maximal compact subgroup of G. The
manifold XΓ = Γ\G/K is a d-dimensional real hyperbolic manifold with cusps.

As usual, let πΓ(x) be the number of prime geodesics Cγ of length lγ ≤ log x
on XΓ. Recall that prime geodesic Cγ corresponds to the conjugacy class γ of
a primitive hyperbolic element with the norm N(γ) = elγ .

The purpose of this short note is to prove that Park’s refinement of the prime
geodesic theorem, due to Gangolli [5] and DeGeorge [3] in the compact case
and to Gangolli-Warner [6] in the finite volume case, can be further improved
to obtain the theorem in the following form.

Theorem 1. Let XΓ be as above. Then

πΓ(x) =
∑

3
2d0<sn(k)≤2d0

(−1)
k
li
(
xsn(k)

)
+O

(
x

3
2d0 (log x)

−1
)

as x → +∞, where d0 = d−1
2 , (sn(k)− k) (2d0 − k − sn(k)) is a small eigen-

value in
[
0, 34d

2
0

]
of ∆k on πσk,λn(k) with sn(k) = d0 + iλn(k) or sn(k) =

d0 − iλn(k) in
(
3
2d0, 2d0

]
, ∆k is the Laplacian acting on the space of k-forms

over XΓ and πσk,λn(k) is the principal series representation.

Proof. Let Γh (resp. PΓh) denote the set of the Γ-conjugacy classes of hy-
perbolic (resp. primitive hyperbolic) elements in Γ. Set Λ(γ) = lγ0 , where
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γ = γ
j(γ)
0 , γ0 ∈ PΓh, j (γ) ∈ N. It is well known that the assertion of the

theorem can be easily deduced from the relation

(1) ψ0(x) =
∑

γ∈Γh,N(γ)≤x

Λ(γ) =
∑

sn(k)∈( 3
2d0,2d0]

(−1)kxsn(k)

sn(k)
+O

(
x

3
2d0

)
.

We observe that J. Park [12] proved a variant of (1) with the error term

O
(
x

3
2d0 (log x)

1
2

)
in place of O

(
x

3
2d0

)
. The key role in his proof is played

by the Ruelle zeta function replacing the Selberg zeta. This is in line with
Parry-Pollicott [13]. The ingredients come from the results of Fried [4] and
further investigations of the Ruelle zeta by Gon-Park [7]. The error term

O
(
x

3
2d0 (log x)

1
2

)
stems from Park’s modification of Hejhal’s techniques [8],

[9] and the use of a higher order counting function ψd−1(x), where ψn(x) is
defined recursively by ψn(x) =

∫ x

0
ψn−1(t)dt for n ∈ N. Inspired by Randol’s

approach in the case of compact Riemann surfaces, we consider ψd(x) instead
of ψd−1(x).

It is well known that ψd(x) can be represented in the form

ψd(x) = − 1

2πi

∫ c+i∞

c−i∞

R
′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)
ds

for some c > 2d0. Here, RΓ is the Ruelle zeta function defined by

RΓ(s) =
∏

γ0∈PΓh

(
1− e−slγ0

)−1
, Re (s) > 2d0,

and meromorphically continued to the whole complex plane. Following [12],
we apply the Cauchy residue theorem to the integrand of ψd(x) over R(T ) =

{s ∈ C | |s| ≤ T, Re (s) ≤ d0} ∪
{
s ∈ C | d0 ≤ Re (s) ≤ c, −T̃ ≤ Im (s) ≤ T̃

}
,

where T̃ =
√
T 2 − d20 and T ≫ 0 is such that there is no zero or pole of the

integrand over the boundary of R(T ).
For a fixed 0 < ε < c− d0, the adjusted Park argumentation gives us

1

2πi

∫ c+iT̃

c−iT̃

R
′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)
ds

(2)

= − 1

2πi

∫
CT

+
1

2πi

(∫ d0+ε+iT̃

d0+iT̃

+

∫ d0−iT̃

d0+ε−iT̃

)
+

1

2πi

(∫ c+iT̃

d0+ε+iT̃

+

∫ d0+ε−iT̃

c−iT̃

)

+
∑

z∈R(T )

Ress=z

(
R

′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)

)

= − 1

2πi

∫
CT

+O
(
xd+d0+εT−2

)
+O

(
ε−1xc+dT−2

)
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+
∑

z∈R(T )

Ress=z

(
R

′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)

)
,

where CT is the anti-clockwise oriented circular part of the boundary of R (T ).
Now, the first integral on the right hand side of (2) can be estimated by

(3)
1

2πi

∫
CT

R
′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)
ds = O

(
xd+d0T−1 log T

)
,

since∣∣∣∣∣ 1

2πi

∫
CT

R
′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)
ds

∣∣∣∣∣ ≤ C1x
d+d0T−(d+1)

∫
CT

∣∣∣∣∣R
′

Γ(s)

RΓ(s)

∣∣∣∣∣ |ds|
≤ C1x

d+d0T−(d+1)

∫
|s|=T

∣∣∣∣∣R
′

Γ(s)

RΓ(s)

∣∣∣∣∣ |ds|
≤ C2x

d+d0T−1 log T

according to [4, p. 509, Prop. 7].
We note that (3) is to be compared to [12, relation (3.8)].
Furthermore,

(4)

∑
z∈R(T )

Ress=z

(
−R

′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)

)

=
∑

sn(k)∈(d0,2d0]

(−1)k
xsn(k)+d

sn(k)(sn(k) + 1) · · · (sn(k) + d)

+
∑

−T̃≤λn(0)≤T̃

xsn(0)+d

sn(0)(sn(0) + 1) · · · (sn(0) + d)

+
∑

z∈R(T,d0)

Ress=z

(
−R

′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)

)
,

where R (T, d0) = R(T ) ∩ {s ∈ C| Re (s) < d0}.
However,

(5)
∑

z∈R(T,d0)

Ress=z

(
−R

′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)

)
= O

(
xd+d0T−1 log T

)
,

as opposed to [12, (3.17)].
Taking into account (3), (4), (5), as well as the fact that

1

2πi

∫ c+iT̃

c−iT̃

R
′

Γ(s)

RΓ(s)

xs+d

s(s+ 1) · · · (s+ d)
ds = −ψd(x) +O

(
xc+dT−d

)
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and passing to the limit T → +∞ in (2), we end up with

(6)

ψd(x) =
∑

sn(k)∈(d0,2d0]

(−1)k
xsn(k)+d

sn(k)(sn(k) + 1) · · · (sn(k) + d)

+
∑

sn(0)=d0±iλn(0)

xsn(0)+d

sn(0)(sn(0) + 1) · · · (sn(0) + d)
.

To derive the asymptotics of ψ0(x) from the asymptotics of ψd(x), one proceeds
in the standard way introducing the functions

∆+
d f(x) =

∫ x+h

x

∫ x2d0
+h

x2d0

· · ·
∫ x1+h

x1

f (d)(x0)dx0 · · · dx2d0

and

∆−
d f(x) =

∫ x

x−h

∫ x2d0

x2d0
−h

· · ·
∫ x1

x1−h

f (d)(x0)dx0 · · · dx2d0

for some constant h to be specified later on.
Notice that

(7) h−d∆+
d

xsn(k)+d

sn(k)(sn(k) + 1) · · · (sn(k) + d)
=
xsn(k)

sn(k)
+O

(
hsn(k)

)
and

(8)
h−d∆+

d

xsn(0)+d

sn(0)(sn(0) + 1) · · · (sn(0) + d)

= O
(
min

(
xd0 |sn(0)|−1

, h−d |sn(0)|−(d+1)
xd+d0

))
.

The second bound in (8) is straightforward from the representation

∆+
d f(x) =

d∑
i=0

(−1)
i

(
d

i

)
f (x+ (d− i)h) .

The relation (7) and the first bound in (8) are obtained by application of the
mean value theorem (Cf. [8, p. 114]), [14, p. 246]).

Following [11, pp. 463–464] and using (8) we deduce

h−d∆+
d

∑
sn(0)=d0±iλn(0)

xsn(0)+d

sn(0)(sn(0) + 1) · · · (sn(0) + d)
(9)

= O

(
xd0

∫ M

d0

t−1dN(t)

)
+O

(
h−dxd+d0

∫ +∞

M

t−(d+1)dN(t)

)
= O

(
xd0M2d0

)
+O

(
h−dxd+d0M−1

)
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for some M > 2d0, where N(t) = O
(
td
)
denotes the counting function of

sn(0) = d0 + iλn(0). Thus, (6), (7) and (9) imply

(10)
h−d∆+

d ψd(x) =
∑

sn(k)∈(d0,2d0]

(−1)kxsn(k)

sn(k)
+O

(
h2d0

)
+O

(
xd0M2d0

)
+O

(
h−dxd+d0M−1

)
.

Substituting M = x
1
4 , h = x

3
4 into (10), we get

(11) ψ0(x) ≤ h−d∆+
d ψd(x) =

∑
sn(k)∈( 3

2d0,2d0]

(−1)kxsn(k)

sn(k)
+O

(
x

3
2d0

)
.

Reasoning in an analogous way, one proves

(12)
∑

sn(k)∈( 3
2d0,2d0]

(−1)kxsn(k)

sn(k)
+O

(
x

3
2d0

)
= h−d∆−

d ψd(x) ≤ ψ0(x).

Combining (11) and (12), we finally obtain

ψ0(x) =
∑

sn(k)∈( 3
2d0,2d0]

(−1)kxsn(k)

sn(k)
+O

(
x

3
2d0

)
.

This completes the proof. □

Final Remarks. It is easily seen that taking ψn(x) with n > d does not yield

a better result. The obtained error term O
(
x

3
2d0 (log x)

−1
)
in the prime geo-

desic theorem is in accordance with the known estimate in the case of Riemann
surfaces that can be achieved through several different approaches (see, e.g.,
[1], [2], [14]). Actually, in the Concluding Remark of [14], Randol noted that it
would be interesting to determine the extent to which his methods are appli-
cable to more general symmetric spaces. Theorem 1 can be interpreted as an
answer to this query in our setting.
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Dženan Gušić
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