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CERTAIN INTEGRAL REPRESENTATIONS OF

GENERALIZED STIELTJES CONSTANTS γk(a)

Jong Moon Shin

Abstract. A large number of series and integral representations for the

Stieltjes constants (or generalized Euler-Mascheroni constants) γk and the

generalized Stieltjes constants γk(a) have been investigated. Here we aim
at presenting certain integral representations for the generalized Stieltjes

constants γk(a) by choosing to use four known integral representations

for the generalized zeta function ζ(s, a). As a by-product, our main re-
sults are easily seen to specialize to yield those corresponding integral

representations for the Stieltjes constants γk. Some relevant connections
of certain special cases of our results presented here with those in earlier

works are also pointed out.

1. Introduction and Preliminaries

Throughout this paper let R, C, N and Z−0 be the sets of real numbers,
complex numbers, positive integers and nonpositive integers, respectively, and
N0 := N ∪ {0}. For simplicity, we also denote (log z)α by logα z.

The Hurwitz (or generalized) zeta function ζ(s, a) is defined by

ζ(s, a) :=

∞∑
k=0

(k + a)
−s (

<(s) > 1; a ∈ C \ Z−0
)
, (1)

whose special case when a = 1 is the Riemann zeta function ζ(s, 1) := ζ(s)
defined by (see, e.g., [19, Section 2.3])

ζ(s) :=



∞∑
n=1

1

ns
=

1

1− 2−s

∞∑
n=1

1

(2n− 1)s
(<(s) > 1)

1

1− 21−s

∞∑
n=1

(−1)n−1

ns
(<(s) > 0; s 6= 1).

(2)
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It is known (see, e.g., [19, Section 2.2]) that both the Riemann zeta function
ζ(s) and the Hurwitz zeta function ζ(s, a) can be continued meromorphically
to the whole complex s-plane, except for a simple pole only at s = 1 with
their respective residue 1, in many different ways, for example, by means of the
contour integral representation (see, e.g., [19, p. 156, Eq. (3)]):

ζ(s, a) = −Γ(1− s)
2πi

∫
C

(−z)s−1 e−az

1− e−z
dz, (3)

where the contour C is the Hankel loop (cf., e.g., Whittaker and Watson [20,
p. 245]), which starts from ∞ along the upper side of the positive real axis,
encircles the origin once in the positive (counter-clockwise) direction, and then
returns to ∞ along the lower side of the positive real axis.

The Laurent series expansion of ζ(s, a) centered at its simple pole s = 1 is
given by

ζ(s, a) =
1

s− 1
+

∞∑
k=0

(−1)k

k!
γk(a) (s− 1)k (s ∈ C \ {1}; <(a) > 0) , (4)

where {γk(a)}k∈N0
are known as generalized Stieltjes constants (see, e.g., [1,

p. 1356]). The series representation (4) is equivalently written in the following
form:

(s− 1) ζ(s, a) = 1 +

∞∑
k=0

(−1)k

k!
γk(a) (s− 1)k+1 (s ∈ C; <(a) > 0) . (5)

We find from (4) and (5), respectively, that

lim
s→1

(
∂k

∂sk
Z(s, a)

)
= (−1)k γk(a) (k ∈ N0; <(a) > 0) (6)

and

lim
s→1

(
∂k+1

∂sk+1
(s− 1) ζ(s, a)

)
= (−1)k (k + 1) γk(a) (k ∈ N0; <(a) > 0) , (7)

where, for simplicity,

Z(s, a) := ζ(s, a)− 1

s− 1
. (8)

Berndt [3, Theorem 1] (see also [1, Eq. (1.2)]) showed that

γk(a) = lim
n→∞


n∑
j=0

logk(j + a)

j + a
− logk+1(n+ a)

k + 1

 (k ∈ N0; 0 < a ≤ 1) .

(9)
The Stieltjes constants γk (k ∈ N0) arise from the following Laurent expansion
of the Riemann zeta function ζ(s) about s = 1 (see, e.g., [14, pp. 166-169], [15,
p. 255] and [19, p. 165]):

ζ(s) =
1

s− 1
+

∞∑
k=0

(−1)k

k!
γk (s− 1)k, (10)
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where

γk = lim
n→∞


n∑
j=1

logk j

j
−

n∫
1

logk x

x
dx


= lim
n→∞


n∑
j=1

logk j

j
− logk+1 n

k + 1

 (k ∈ N0)

(11)

and, in particular, γ0 (denoted by γ) is the Euler-Mascheroni constant (see, for
details, [14, Section 1.5] and [19, Section 1.2]):

γ := lim
n→∞

 n∑
j=1

1

j
− log n

 ∼= 0.57721 56649 · · · . (12)

The Stieltjes constants γk are named after Thomas Jan Stieltjes and often
referred to as generalized Euler-Mascheroni constants. It is easy to see that

γk(1) = γk (k ∈ N0) . (13)

Adell [1] approximated each generalized Stieltjes constants γk(a) by means
of a finite sum involving Bernoulli numbers. Kreminski [17] presented a new ap-
proach to high-precision approximation of γk(a). A remarkably large number of
integral formulas for the Euler-Mascheroni constant γ have been presented (see,
e.g., [7], [16], and [19, Section 1.2]). The Stieltjes and generalized Stieltjes con-
stants γk and γk(a) (k ∈ N0) have been investigated in various ways, especially
for their series and integral representations (see, e.g., [2, 5, 8, 9, 11, 12, 13, 18]
and the references cited therein; see also [14, Section 2.21]).

In 1985, using contour integration, Ainsworth and Howell [2] showed that

γk = 2<


∞∫
0

(x− i) logk(1− ix)

(1 + x2) (e2πx − 1)
dx

 (k ∈ N) (14)

and

γ = γ0 =
1

2
+ 2<


∞∫
0

(x− i)
(1 + x2) (e2πx − 1)

dx


=

1

2
+ 2

∞∫
0

x

(1 + x2) (e2πx − 1)
dx.

(15)

Coffey [9, Proposition 3] (see also Coffey [10, Eq. (2.17)]) found several integral
representations for the generalized Stieltjes constants γk(a), one of which is
recalled here:

γk(a) =
1

2a
logk a− logk+1 a

k + 1
+

2

a
<


∞∫
0

(y/a− i) logk(a− iy)

(1 + y2/a2) (e2πy − 1)
dy

 (16)
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(<(a) > 0; k ∈ N) ,

which, upon setting a = 1, yields (14). By using binomial theorem, we have

log2k(a− iy) =

{
1

2
ln
(
a2 + y2

)
− i arctan

(y
a

)}2k

= Ak(a, y) + iBk(a, y) (k ∈ N),

(17)

where, for convenience and simplicity,

Ak(a, y) :=

k∑
j=0

(−1)j

22k−2j

(
2k

2j

)
arctan2j

(y
a

)
· ln2k−2j (a2 + y2

)
and

Bk(a, y) :=

k∑
j=1

(−1)j

22k+1−2j

(
2k

2j − 1

)
arctan2j−1

(y
a

)
· ln2k+1−2j (a2 + y2

)
.

From (16) and (17), we obtain a more explicit integral representation for the
generalized Stieltjes constants γ2k(a):

γ2k(a) =
1

2a
ln2k a− ln2k+1 a

2k + 1
+

2

a

∞∫
0

y
a Ak(a, y) + Bk(a, y)(

1 + y2

a2

)
(e2πy − 1)

dy (a > 0; k ∈ N).

(18)
where Ak(a, y) and Bk(a, y) are given in (17). Similarly, we have

log2k+1(a− iy)) =

{
1

2
ln
(
a2 + y2

)
− i arctan

(y
a

)}2k+1

= Ck(a, y) + iDk(a, y) (k ∈ N0) ,

(19)

where, for convenience and simplicity,

Ck(a, y) :=

k∑
j=0

(−1)j

22k+1−2j

(
2k + 1

2j

)
arctan2j

(y
a

)
· ln2k+1−2j (a2 + y2

)
and

Dk(a, y) :=

k∑
j=0

(−1)j+1

22k−2j

(
2k + 1

2j + 1

)
arctan2j+1

(y
a

)
· ln2k−2j (a2 + y2

)
.

From (16) and (19), we get a more explicit integral representation for the
generalized Stieltjes constants γ2k+1(a):

γ2k+1(a) =
1

2a
ln2k+1 a− ln2k+2 a

2k + 2

+
2

a

∞∫
0

y
a Ck(a, y) +Dk(a, y)(

1 + y2

a2

)
(e2πy − 1)

dy (a > 0; k ∈ N0) .

(20)

where Ck(a, y) and Dk(a, y) are given in (19).
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Here we aim at presenting certain interesting integral representations of the
generalized Stieltjes constants γk(a) of a similar nature as those in (18) and
(20) by mainly using four known integral representations of the generalized zeta
function ζ(s, a). As a by-product, our main results are easily seen to specialize
to yield those corresponding integral representations for the Stieltjes constants
γk. Some relevant connections of certain special cases of our results presented
here with those in earlier works are also pointed out.

To do this, we recall the Polygamma functions ψ(n)(s) (n ∈ N) defined by

ψ(n)(s) :=
dn+1

dzn+1
log Γ(s) =

dn

dsn
ψ(s)

(
n ∈ N0; s ∈ C \ Z−0

)
, (21)

where ψ(s) denotes the Psi (or Digamma) function defined by

ψ(s) :=
d

ds
log Γ(s) and ψ(0)(s) = ψ(s)

(
s ∈ C \ Z−0

)
. (22)

A well-known (and potentially useful) relationship between the Polygamma
functions ψ(n)(s) and the generalized zeta function ζ(s, a) is also given by

ψ(n)(s) = (−1)n+1 n!

∞∑
k=0

1

(k + s)n+1
= (−1)n+1 n! ζ(n+ 1, s) (23)

(
n ∈ N; s ∈ C \ Z−0

)
.

In particular, we have

ψ(n)(1) = (−1)n+1 n! ζ(n+ 1) (n ∈ N) . (24)

2. Integral representations for γk(a)

We begin by presenting two formulas asserted by Lemma 1 below.

Lemma 1. Each of the following formulas holds true:

lim
s→1

dj

dsj
ts−1 = logj t (t ∈ C \ {0}; j ∈ N0) . (25)

If we define αj (j ∈ N0) by

αj := lim
s→1

dj

dsj
Γ(2− s),

then we have a recurrence formula for αj as follows:

α`+1 = γ α` +

`−1∑
j=0

`!

j!
αj ζ(`− j + 1) (` ∈ N0) , (26)

where an empty sum is understood to be nil throughout this paper, ζ denotes the
Riemann zeta function given in (2), γ is the Euler-Mascheroni constant defined
by (12), and

α0 = 1 and α1 = γ. (27)
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Proof. The formula (25) is straightforward. To prove (26), let f(s) := Γ(2−s).
The logarithmic derivative of f(s) gives

f ′(s) = −Γ(2− s)ψ(2− s), (28)

where ψ is the Psi function given in (22). Differentiating each side of (28) `
times (Leibniz’s generalization of the product rule for differentiation is used for
its right-hand side) and taking the limit on each side of the resulting identity
as s→ 1, we obtain

lim
s→1

f (`+1)(s) = − lim
s→1

∑̀
j=0

(
`

j

) {
dj

dsj
Γ(2− s)

} {
d`−j

ds`−j
ψ(2− s)

}
,

which, upon using (24), yields the desired result (26). Also we have

α0 = Γ(1) = 1 and α1 = −Γ(1)ψ(1) = −ψ(1) = γ, (29)

where γ is the Euler-Mascheroni constant given in (12). �

In addition to the formulas in (29), the next several αj are given as follows:

α2 = γ2 + ζ(2); α3 = γ3 + 3γ ζ(2) + 2 ζ(3);

α4 = γ4 + 6 γ2 ζ(2) + 8 γ ζ(3) +
27

2
ζ(4),

(30)

where, for α4, the following known recurrence formula for ζ(2n) (see, e.g., [19,
p. 167, Eq.(20)]):

ζ(2n) =
2

2n+ 1

n−1∑
k=1

ζ(2k)ζ(2n− 2k) (n ∈ N \ {1}), (31)

which can also be used to evaluate ζ(2n) (n ∈ N \ {1}) by recalling the Basler
problem ζ(2) = π2/6 (see, e.g., [6] and the references cited therein).

Recall a known contour integral representation of the generalized zeta func-
tion ζ(s, a) (see, e.g., [19, p. 156, Eq.(3)]):

ζ(s, a) = −Γ(1− s)
2πi

∫
C

(−z)s−1 e−az

1− e−z
dz, (32)

where the contour C is essentially a Hankel’s loop (cf., e.g., Whittaker and
Watson [20, p. 245]), which starts from ∞ along the upper side of the positive
real axis, encircles the origin once in the positive (counter-clockwise) direction,
and then returns to∞ along the lower side of the positive real axis. Multiplying
each side of (32) by s−1 and using the fundamental functional relation for the
gamma function Γ:

Γ(s+ 1) = sΓ(s), (33)

we have

(s− 1) ζ(s, a) =
Γ(2− s)

2πi

∫
C

(−z)s−1 e−az

1− e−z
dz

(
s ∈ C; a ∈ C \ Z−0

)
. (34)
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Differentiating each side of (34), k + 1 times, with respect to s (Leibniz’s
generalization of the product rule for differentiation is used for its right-hand
side) and taking the limit on both sides of the resulting identity as s → 1,
in view of (7), we obtain a contour integral representation of the generalized
Stieltjes constants γk(a) asserted by Theorem 1 below.

Theorem 1. The following contour integral representation of γk(a) holds
true:

γk(a) =
(−1)k

2πi (k + 1)

k+1∑
j=0

(
k + 1

j

)
αj

∫
C

logk+1−j(−z) e−az

1− e−z
dz

(
a ∈ C \ Z−0

)
,

(35)
where αj are given in (26) and C is the Hankel’s loop.

We give two formulas for later use as in the following lemma.

Lemma 2. The following identities holds true:

lim
s→1

{
∂j

∂sj
sin
(
s arctan

y

a

)}
= arctanj

(y
a

)
sin
(

arctan
y

a
+
π

2
j
)

(j ∈ N0)

(36)
and

lim
s→1

(
∂j

∂sj
a1−s − 1

s− 1

)
= (−1)j+1 logj+1 a

j + 1
(j ∈ N0) . (37)

Proof. Here we prove only (37). The other one is easier and direct. Indeed, we
have

a1−s − 1

s− 1
=

exp[(1− s) log a]− 1

s− 1

=
1

s− 1

{ ∞∑
k=0

(−1)k (s− 1)k logk a

k!
− 1

}

=

∞∑
k=0

(−1)k+1 logk+1 a

(k + 1)!
(s− 1)k.

Then we find that

∂j

∂sj
a1−s − 1

s− 1
=

∞∑
k=j

k!

(k + 1)!
(−1)k+1 logk+1 a · (s− 1)k−j ,

which, upon taking the limit as s→ 1, yields (37). �
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We find from Hermite’s formula for ζ(s, a) (see, e.g., [19, p. 158, Eq.(12)])
that

Z(s, a) :=ζ(s, a)− 1

s− 1
=

1

2
a−s +

a1−s − 1

s− 1

+ 2

∞∫
0

(
a2 + y2

)− 1
2 s
{

sin
(
s arctan

y

a

)} dy

e2πy − 1

(38)

(
s ∈ C \ {1}; a ∈ C \ Z−0

)
.

It is noted that the integral in (38) is an entire function of s.
Using (38) and (6) with the aid of the identities in Lemma 2, as in getting

(35), we obtain an integral representation of the generalized Stieltjes constants
γk(a) asserted by Theorem 2 below.

Theorem 2. The following integral representation for γk(a) holds true:

γk(a) =
logk a

2a
− logk+1 a

k + 1
+ 2 (−1)k

k∑
j=0

(
k

j

)
(−1)j

2j

·
∞∫
0

logj
(
a2 + y2

)√
a2 + y2

arctank−j
(y
a

)
sin
(

arctan
y

a
+
π

2
(k − j)

) dy

e2πy − 1

(39)(
k ∈ N; a ∈ C \ Z−0

)
and

γ0(a) =
1

2a
− log a+ 2

∞∫
0

sin
(
arctan y

a

)√
a2 + y2 (e2πy − 1)

dy
(
a ∈ C \ Z−0

)
. (40)

If we define βj by

βj := lim
s→1

(
1

Γ(s)

)(j)

(j ∈ N0) , (41)

as in getting (26), we have a recurrence formula for βj (for details, see [5]):

βk+1 =

k−1∑
j=0

(−1)k−j
k!

j!
ζ(k + 1− j)βj + γ βk (k ∈ N0) , (42)

where β0 = 1 and β1 = γ, and

β2 = γ2 − ζ(2), β3 = γ3 − 3 γ ζ(2) + 2 ζ(3),

β4 = γ4 − 6 γ2 ζ(2) + 8 γ ζ(3) +
3

2
ζ(4).

(43)
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From a known integral representation for ζ(s, a) (see, e.g., [19, p. 160,
Eq.(22)]), we obtain

Z(s, a) =ζ(s, a)− 1

s− 1
=

1

2
a−s +

a1−s − 1

s− 1

+
1

Γ(s)

∞∫
0

(
1

et − 1
− 1

t
+

1

2

)
e−at ts−1 dt

(<(s) > −1; <(a) > 0).

(44)

Considering (44) and similarly as in getting (35) and (39), we get an integral
representation for γk(a) given in Theorem 3 below.

Theorem 3. The following integral representation for γk(a) holds true:

γk(a) =
logk a

2a
− logk+1 a

k + 1

+

k∑
j=0

(
k

j

)
βj

∞∫
0

(
1

et − 1
− 1

t
+

1

2

)
e−at logk−j t dt

(45)

(k ∈ N; <(a) > 0)

and

γ0(a) =
1

2a
− log a+

∞∫
0

(
1

et − 1
− 1

t
+

1

2

)
e−at dt (<(a) > 0) . (46)

Recall a further generalization of Leibniz’s generalization of the product rule
for differentiation (see, e.g., [4, p. 1, Entry 1.11.-5]) given in Lemma 3 below.

Lemma 3. The following derivative formulas hold true:

dn

dzn
[f1(z) f2(z) · · · fm(z)] =

n∑
k1=0

(
n

k1

)
f
(k1)
1 (z)

n−k1∑
k2=0

(
n− k1
k2

)
f
(k2)
2 (z)

· · ·
n−k1−···−km−2∑

km−1=0

(
n− k1 − · · · − km−2

km−1

)
f
(km−1)
m−1 (z) f (n−k1−···−km−1)

m (z),

(47)
where m, n ∈ N. The special cases of (47) when m = 2 and 3 are

dn

dzn
[f1(z) f2(z)] =

n∑
k1=0

(
n

k1

)
f
(k1)
1 (z) f

(n−k1)
2 (z) (n ∈ N), (48)
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which is the Leibniz’s generalization of the product rule, and

dn

dzn
[f1(z) f2(z) f3(z)]

=

n∑
k1=0

(
n

k1

) n−k1∑
k2=0

(
n− k1
k2

)
f
(k2)
2 (z) f

(n−k1−k2)
3 (z) (n ∈ N).

(49)

We also have

lim
s→1

{
∂j

∂sj
cos ((s− 1) arctan t)

}
= arctanj t · cos

(π
2
j
)

=
1 + (−1)j

2
(−1)[j/2] arctanj t (j ∈ N0) ,

(50)
where [x] denotes the greatest integer less than or equal to x ∈ R.

From a known integral representation for ζ(s, a) (see, e.g., [19, p. 160,
Eq.(23)]), we get

(s− 1)ζ(s, a) = π 2s−2

·
∞∫
0

[
t2 + (2a− 1)2

] 1
2 (1−s)

cos
[
(s− 1) arctan

(
t

2a−1

)]
cosh2

(
1
2πt
) dt

(51)

(
s ∈ C; <(a) >

1

2

)
.

Applying the formula (49) to differentiate each side of (51), k + 1 times,
with respect to s, and taking the limit on both sides of the resulting identity
as s→ 1, and using (50), we obtain an integral representation for γk(a) given
in Theorem 4 below.

Theorem 4. The following integral representation for γk(a) holds true:

γk(a) =
π

2(k + 1)

k+1∑
`=0

(
k + 1

`

)
log` 2

∞∫
0

k+1−`∑
j=0

(
k + 1− `

j

)
1 + (−1)j

2
(−1)[j/2]

· arctanj
(

t

2a− 1

)
(−1)1+`+j

2k+1−`−j logk+1−`−j (t2 + (2a− 1)2
)

· 1

cosh2
(
1
2πt
) dt (

k ∈ N0; <(a) >
1

2

)
,

(52)
where [x] denotes the greatest integer less than or equal to x ∈ R.
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3. Special cases and remarks

In view of the relationship between the Stieltjes constants γk and the gen-
eralized Stieltjes constants γk(a) (13), the special cases of (35), (39), (45) and
(52) when a = 1 yield certain integral representations for the Stieltjes constants
γk given in Corollary 1 below.

Corollary 1. Each of the following integral representations for the Stielt-
jes constants γk holds true:

γk =
(−1)k

2πi (k + 1)

k+1∑
j=0

(
k + 1

j

)
αj

∫
C

e−z logk+1−j(−z)
1− e−z

dz, (53)

where αj are given in (26) and C is the Hankel’s loop.

γk = 2 (−1)k
k∑
j=0

(
k

j

)
(−1)j

2j

·
∞∫
0

logj
(
1 + y2

)√
1 + y2

arctank−j y sin
(

arctan y +
π

2
(k − j)

) dy

e2πy − 1

(54)

(k ∈ N) .

γk =

k∑
j=0

(
k

j

)
βj

∞∫
0

(
1

et − 1
− 1

t
+

1

2

)
e−t logk−j t dt (k ∈ N) , (55)

where βj are given in (42).

γk =
π

2(k + 1)

k+1∑
`=0

(
k + 1

`

)
log` 2

∞∫
0

k+1−`∑
j=0

(
k + 1− `

j

)
1 + (−1)j

2
(−1)[j/2]

· arctanj t
(−1)1+`+j

2k+1−`−j logk+1−`−j (1 + t2
) 1

cosh2
(
1
2πt
) dt (k ∈ N0) ,

(56)
where [x] denotes the greatest integer less than or equal to x ∈ R.

It is noted that the Stieltjes constants in (55) and (54) are seen to be equal
to those, respectively, in [5, Eq.(2.14)] and [5, Eq.(2.22)], whose the latter one
should be multiplied by 2. A remarkably large number of integral formulas
for the Euler-Mascheroni constant γ have been presented (see,e.g., [19, Section
1.2]; see also [7] and references cited therein). Further special cases of (40), (46)
and (56) yield some integral representations for the Euler-Mascheroni constant
γ given in Corollary 2 below.
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Corollary 2. Each of the following integral representations for the Euler-
Mascheroni constant γ holds true:

γ =
1

2
+ 2

∞∫
0

sin (arctan y)√
1 + y2 (e2πy − 1)

dy. (57)

γ =

∞∫
0

(
1

et − 1
− 1

t
+ 1

)
e−t dt. (58)

γ =
π

2

∞∫
0

log

(
2√

1 + t2

)
dt

cosh2
(
1
2πt
) . (59)

It is noted that (57) and (58) are known formulas (see, cf., e.g., [19, p.17,
Eq.(35) and p. 16, Eq.(9)], respectively).
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