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A NUMERICAL INVESTIGATION ON THE STRUCTURE OF

THE ROOT OF THE (p, q)-ANALOGUE OF BERNOULLI

POLYNOMIALS†

C.S. RYOO

Abstract. In this paper we define the (p, q)-analogue of Bernoulli num-

bers and polynomials by generalizing the Bernoulli numbers and polynomi-
als, Carlitz’s type q-Bernoulli numbers and polynomials. We also give some
interesting properties, explicit formulas, a connection with (p, q)-analogue
of Bernoulli numbers and polynomials. Finally, we investigate the zeros of

the (p, q)-analogue of Bernoulli polynomials by using computer.
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1. Introduction

Mathematicians have studied in the area of the Bernoulli numbers and poly-
nomials, Euler numbers and polynomials, Genocchi numbers and polynomials,
tangent numbers and polynomials(see [1-15]). Throughout this paper, we al-
ways make use of the following notations: N denotes the set of natural numbers,
Z+ = N∪ {0} denotes the set of nonnegative integers, Z−

0 = {0,−1,−2,−2, . . .}
denotes the set of nonpositive integers, Z denotes the set of integers, R denotes
the set of real numbers, and C denotes the set of complex numbers.

We remember that the classical Bernoulli numbers Bn and Bernoulli polyno-
mials Bn(x) are defined by the following generating functions(see [1, 3, 9])

t

et − 1
=

∞∑
n=0

Bn
tn

n!
. (1.1)
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and (
t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
. (1.2)

respectively. The (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
.

It is clear that (p, q)-number contains symmetric property, and this number is
q-number when p = 1. In particular, we can see limq→1[n]p,q = n with p = 1.

By using (p, q)-number, we define the (p, q)-analogue of Bernoulli polynomials
and numbers, which generalized the previously known numbers and polynomials,
including the Carlitz’s type q-Bernoulli numbers and polynomials. We begin by
recalling here the Carlitz’s type q-Bernoulli numbers and polynomials(see [2]).

Definition 1.1. The Carlitz’s type q-Bernoulli polynomials Bn,q(x) are defined
by means of the generating function

Fq(t, x) =
∞∑
n=0

Bn,q(x)
tn

n!
= −t

∞∑
m=0

qme[m+x]qt, (1.3)

and their values at x = 0 are called the Carlitz’s type q-Bernoulli numbers and
denoted Bn,q.

Many kinds of of generalizations of these polynomials and numbers have been
presented in the literature(see [1-15]). Based on this idea, we generalize the
Carlitz’s type q-Bernoullir number Bn,q and q-Bernoulli polynomials Bn,q(x).
It follows that we define the following (p, q)-analogues of the the Carlitz’s type
q-Bernoulli number Bn,q and q-Bernoulli polynomials Bn,q(x).

In the following section, we introduce the (p, q)-analogue of Bernoulli poly-
nomials and numbers. After that we define (p, q)-analogue of Riemann zeta
function. Finally, we investigate the zeros of the (p, q)-analogue of Bernoulli
polynomials by using computer.

2. (p, q)-analogue of Bernoulli numbers and polynomials

In this section, we define (p, q)-analogue of Bernoulli numbers and polynomials
and provide some of their relevant properties.

Definition 2.1. For 0 < q < p ≤ 1, the Carlitz’s type (p, q)-Bernoulli num-
bers Bn,p,q and polynomials Bn,p,q(x) are defined by means of the generating
functions

Fp,q(t) =
∞∑
n=0

Bn,p,q
tn

n!
= −t

∞∑
m=0

qme[m]p,qt, (2.1)

and

Fp,q(t, x) =

∞∑
n=0

Bn,p,q(x)
tn

n!
= −t

∞∑
m=0

qme[m+x]p,qt, (2.2)

respectively.
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Setting p = 1 in (2.1) and (2.2), we can obtain the corresponding defini-
tions for the Carlitz’s type q-Bernoulli number Bn,q and q-Bernoulli polynomials
Bn,q(x) respectively. Obviously, if we put p = 1, then we have

Bn,p,q(x) = Bn,q(x), Bn,p,q = Bn,q.

Putting p = 1, we have

lim
q→1

Bn,p,q(x) = Bn(x), lim
q→1

Bn,p,q = Bn.

By using above equation (2.1), we have
∞∑
n=0

Bn,p,q
tn

n!
= −t

∞∑
m=0

qme[m]p,qt

=
∞∑
n=0

(
−n

(p− q)
n−1

n−1∑
l=0

(
n− 1

l

)
(−1)l

1

1− ql+1pn−l−1

)
tn

n!
.

(2.3)

By comparing the coefficients tn

n! in the above equation, we have the following
theorem.

Theorem 2.2. For n ∈ Z+, we have

Bn,p,q = −n
(

1

p− q

)n−1 n−1∑
l=0

(
n− 1

l

)
(−1)l

1

1− ql+1pn−l−1
.

If we put p = 1 in the above theorem we obtain

Bn,q = −n
(

1

1− q

)n−1 n−1∑
l=0

(
n− 1

l

)
(−1)l

1

1− ql+1
.

By (2.2), we obtain

Bn,p,q(x) =
−n

(p− q)
n−1

n−1∑
l=0

(
n− 1

l

)
(−1)lqxlp(n−l−1)x 1

1− ql+1pn−l−1
. (2.4)

By using (2.2) and (2.4), we obtain
∞∑
n=0

Bn,p,q(x)
tn

n!

=
∞∑
n=0

(
−n

(p− q)
n−1

n−1∑
l=0

(
n− 1

l

)
(−1)lqxlp(n−l−1)x 1

1− ql+1pn−l−1

)
tn

n!

= −t
∞∑
m=0

qme[m+x]p,qt.

(2.5)

The following elementary properties of the (p, q)-analogue of Bernoulli num-
bers Bn,p,q and polynomials Bn,p,q(x) are readily derived form (2.1) and (2.2).
We, therefore, choose to omit details involved.
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Theorem 2.3. (Distribution relation). For any positive integer m, we have

Bn,p,q(x) = [m]n−1
p,q

m−1∑
a=0

qaBn,pm,qm

(
a+ x

m

)
, n ∈ Z+.

Theorem 2.4. (Property of complement). For n ∈ Z+, we have

Bn,p−1,q−1(1− x) = (−1)npn−1qnBn,p,q(x).

Theorem 2.5. For n ∈ Z+, we have

qBn,p,q(1)−Bn,p,q =

{
1 if n = 1,
0, if n ̸= 1.

Theorem 2.6. (Difference equation). For n ∈ Z+, we have

qBn,p,q(x+ 1)−Bn,p,q(x) = n[x]n−1
p,q .

By (2.1) and (2.2), we get

− t

∞∑
l=0

ql+ne[x+n+l]p,qt + t

∞∑
l=0

qle[x+l]p,qt = t

n−1∑
l=0

qle[x+l]p,qt. (2.6)

Hence we have

qn
∞∑
m=0

Bm,p,q(x+ n)
tm

m!
−

∞∑
m=0

Bm,p,q(x)
tm

m!

=

∞∑
m=0

(
m

n−1∑
l=0

ql[x+ l]m−1
p,q

)
tm

m!
.

(2.7)

By comparing the coefficients tm

m! on both sides of (2.7), we have the following
theorem.

Theorem 2.7. For n ∈ Z+, we have

qnBm,p,q(x+ n)−Bm,p,q(x)

m
=
n−1∑
l=0

ql[x+ l]m−1
p,q .

Setting x = 0 in Theorem 2.7, we obtain the sums of powers of consecutive
(p, q)-numbers.

n−1∑
l=0

ql[l]m−1
p,q =

qnBm,p,q(n)−Bm,p,q
m

. (2.8)

Indeed, the formula (2.8) is a (p, q)-analogue of the well known formula

n−1∑
l=0

lm−1 =
Bm(n)−Bm

m
.
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In [11], Ryoo defined the Carlitz’s type (p, q)-Euler polynomials En,p,q(x) are
defined by means of the generating functions

∞∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m+x]p,qt. (2.9)

Let m be even. By (2.2) and (2.9), we obtain the following theorem.

Theorem 2.8. Let m be even. For n ∈ Z+, we have

En,p,q(x) =
−[2]q[m]np,q
n+ 1

m−1∑
k=0

(−1)kqkBn+1,pm,qm

(
x+ k

m

)
.

3. (p, q)-analogue of Riemann zeta function

By using (p, q)-analogue of Bernoulli numbers and polynomials, (p, q)-Riemann
zeta function and Hurwitz (p, q)-Riemann zeta functions are defined. These
functions interpolate the (p, q)-analogue of Bernoulli numbers Bn,p,q, and poly-
nomials Bn,p,q(x), respectively.

The Hurwitz-Lerch Zeta function Φ(z, s, a) is defined by(cf. [1, 2, 3, 4, 5, 15])

Φ(z, s, a) =
∞∑
n=0

zn

(n+ a)s
,

(a ∈ C\Z−
0 , s ∈ C when |z| < 1 and Re(s) > 1 when |z| = 1).

contains, as its special cases, not only the Riemann and Hurwitz Zeta functions:

ζ(s) = Φ(1, s, 1) = ζ(s, 1) =
1

2s − 1
ζ

(
s,

1

2

)
,

ζ(s, a) = Φ(1, s, a) =
∞∑
n=0

1

(n+ a)s
, ( Re(s) > 1 , a /∈ Z−

0 ),

and the Lerch Zeta function:

l(s, ξ) =
∞∑
n=1

e2nπiξ

ns
= e2πiξΦ(e2πiξ, s, 1), (ξ ∈ R , Re(s) > 1),

but also such other functions as the Polylogarithmic function:

Lis(z) =
∞∑
n=1

zn

ns
= zΦ(z, s, 1),

( s ∈ C when |z| < 1 and Re(s) > 1 when |z| = 1),

and the Lipschitz-Lerch Zeta function:

ϕ(ξ, a, s) =

∞∑
n=0

e2nπiξ

(n+ a)s
= Φ(e2πiξ, s, a),

(a ∈ C\Z−
0 , R(s) > 0 when ξ ∈ R\Z, Re(s) > 1 when ξ ∈ Z).

We first define the (p, q)-Hurwitz-Lerch Zeta function as follows:



592 C.S. Ryoo

Definition 3.1. (p, q)-Hurwitz-Lerch Zeta function is defined by

Φp,q(z, s, a) =
∞∑
n=0

zn

[n+ a]sp,q
,

(a ∈ C\Z−
0 , s ∈ C when |z| < 1 and Re(s) > 1 when |z| = 1).

Definition 3.2. (p, q)-Lerch Zeta function is defined by

lp,q(s, ξ) =

∞∑
n=1

e2nπiξ

[n]sp,q
, (ξ ∈ R , Re(s) > 1)

Observe that

lp,q(s, ξ) = e2πiξΦp.q(e
2πiξ, s, 1).

Definition 3.3. (p, q)-Polylogarithmic function is defined by

Lip,q,s(z) =
∞∑
n=1

zn

[n]sp,q
,

( s ∈ C when |z| < 1 and Re(s) > 1 when |z| = 1).

Definition 3.4. (p, q)- Lipschitz-Lerch Zeta function is defined by

ϕp,q(ξ, a, s) =
∞∑
n=0

e2nπiξ

[n+ a]sp,q
= Φp,q(e

2πiξ, s, a),

(a ∈ C\Z−
0 , R(s) > 0 when ξ ∈ R\Z, Re(s) > 1 when ξ ∈ Z).

By using (2.2), we note that

dk

dtk
Fp,q(t, x)

∣∣∣∣
t=0

= −k
∞∑
m=0

qm[m+ x]k−1
p,q (3.1)

and (
d

dt

)k( ∞∑
n=0

Bn,p,q(x)
tn

n!

)∣∣∣∣∣
t=0

= Bk,p,q(x), for k ∈ N. (3.2)

By (3.1) and (3.2), we are now ready to define the (p, q)-Hurwitz zeta function.

Definition 3.5. Let s ∈ C with Re(s) > 0 and x /∈ Z−
0 .

ζp,q(s, x) =
∞∑
n=0

qn

[n+ x]sp,q
. (3.4)

Note that ζp,q(s, x) is a meromorphic function on C. Obverse that, if p = 1
and q → 1, then ζp,q(s, x) = ζ(s, x) which is the Hurwitz zeta function(see [1,
2, 3, 4, 14]). Relation between ζp,q(s, x) and Bk,p,q(x) is given by the following
theorem.
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Theorem 3.6. For k ∈ N, we have

ζp,q(1− k, x) = −Bk,p,q(x)
k

.

By Definition 3.1 and Theorem 3.6, we have

−Bk,p,q(a)
k

=
∞∑
n=0

qn

[n+ a]1−kp,q

= Φp,q(q, 1− k, a).

Hence, we have the following relationship:

Theorem 3.7. Let Φp,q(q, 1 − n, a) be the (p, q)-Hurwitz-Lerch Zeta function.
For n ∈ N, a ∈ C\Z−

0 , we have

Bn,p,q(a) = −nΦp,q(q, 1− n, a).

From (2.1), we note that

dk

dtk
Fp,q(t)

∣∣∣∣
t=0

= −k
∞∑
m=1

qm[m]k−1
p,q

= Bk,p,q, (k ∈ N).

By using the above equation, we are now ready to define (p, q)-Riemann zeta
function.

Definition 3.8. Let s ∈ C with Re(s) > 1.

ζp,q(s) =

∞∑
n=1

qn

[n]sp,q
.

Note that ζp,q(s) is a meromorphic function on C. Note that, if p = 1, q → 1,
then ζp,q(s) = ζ(s) which is the Riemann zeta function(see [3]). Relation between
ζp,q(s) and Bk,p,q is given by the following theorem.

Theorem 3.9. For k ∈ N, we have

ζp,q(1− k) = −Bk,p,q
k

.

By Definition 3.3 and Theorem 3.9, we have

−Bk,p,q(a)
k

=
∞∑
n=1

qn

[n]1−kp,q

= Lip,q,1−k(q).

Definition 3.10. The (p, q)-L-function is defined by

Lp,q(s, a) =
∞∑
n=0

1

[n+ a]sp,q
, (Re(s) > 1 , a ∈ C\Z−

0 ).

Obviously, Lp,q(s, a) = ϕp,q(1, a, s) = Φp,q(e
2πi, s, a).



594 C.S. Ryoo

4. Zeros of the (p, q)-analogue of Bernoulli polynomials

This section aims to demonstrate the benefit of using numerical investiga-
tion to support theoretical prediction and to discover new interesting pattern of
the zeros of the (p, q)-analogue of Bernoulli polynomials Bn,p,q(x). The (p, q)-
analogue of Bernoulli polynomials Bn,p,q(x) can be determined explicitly. A few
of them are

B0,p,q(x) = 0,

B1,p,q(x) =
1

q − 1
,

B2,p,q(x) = − 2(px − pxq2 − qx + pq1+x)

(p− q)(−1 + q)(1 + q)(−1 + pq)
,

B2,p,q(x) =
3(p2x − p1+2xq2 − p2xq3 + p1+2xq5 − 2pxqx + q2x + 2p2+xq1+x)

(p− q)2(−1 + q)(−1 + p2q)(1 + q + q2)(−1 + pq2)

+
3(2pxq3+x − 2p2+xq4+x − p2q1+2x − pq2+2x + p3q3+2x)

(p− q)2(−1 + q)(−1 + p2q)(1 + q + q2)(−1 + pq2)
.

Our numerical results for approximate solutions of real zeros of Bn,p,q(x) are
displayed(Tables 1, 2).

Table 1. Numbers of real and complex zeros of Bn,p,q(x)

degree n real zeros complex zeros

2 1 0
3 0 2
4 1 2
5 0 4
6 1 4
7 0 6
8 1 6
9 0 0
10 1 8
11 0 10
12 1 10
13 0 12
14 1 12
15 0 0
16 1 14

In Table 1, we choose p = 1/2 and q = 1/10.
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We investigate the beautiful zeros of the (p, q)-analogue of Bernoulli polyno-
mials Bn,p,q(x) by using a computer. We plot the zeros of the (p, q)-analogue
of Bernoulli polynomials Bn,p,q(x) for x ∈ C(Figure 1). In Figure 1(top-left),
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Figure 1. Zeros of Bn,p,q(x)

we choose n = 20, p = 1/2 and q = 1/10. In Figure 1(top-right), we choose
n = 20, p = 1/2 and q = 1/26 . In Figure 1(bottom-left), we choose n = 20, p =
1/2 and q = 1/50 . In Figure 1(bottom-right), we choose n = 20, p = 1/2 and
q = 1/250.

We observe a remarkable regular structure of the real roots of the (p, q)-
analogue of Bernoulli polynomials Bn,p,q(x). We also hope to verify a remarkable
regular structure of the real roots of the (p, q)-analogue of Bernoulli polynomials
Bn,p,q(x)(Table 1).
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Next, we calculated an approximate solution satisfying (p, q)-analogue of
Bernoulli polynomials Bn,p,q(x) = 0 for x ∈ R. The results are given in Ta-
ble 2.

Table 2. Approximate solutions of Bn,p,q(x) = 0, p = 1/2, q = 1/10

degree n x

2 −0.0256257

4 −0.10221

6 −0.132579

8 −0.147872

10 −0.157014

12 −0.163077

14 −0.167388

16 −0.170599

18 −0.157276

By numerical computations, we will make a series of the following conjectures:
Prove that Bn,p,q(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic

complex functions. However, Bn,p,q(x) has not Re(x) = a reflection symmetry
for a ∈ R. Using computer, many more values of n have been checked. It still
remains unknown if the conjecture fails or holds for any value n(see Figures 1,
2, 3). We are able to decide if Bn,p,q(x)) = 0 has not n− 1 distinct solutions(see
Table 1). The author has no doubt that investigations along these lines will
lead to a new approach employing numerical method in the research field of the
(p, q)-analogue of Bernoulli polynomials Bn,p,q(x) which appear in mathematics
and physics.
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