A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.