• Title/Summary/Keyword: Ricci symmetric

Search Result 71, Processing Time 0.026 seconds

Ricci Semi-Symmetric Lightlike Hypersurfaces of an Indefinite Cosymplectic Space Form

  • Gupta, Ram Shankar
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.593-602
    • /
    • 2013
  • This paper is devoted to study Ricci semi-symmetric lightlike hypersurfaces of an indefinite cosymplectic space form with structure vector field tangent to hypersurface. The condition for Ricci tensor of lightlike hypersurface of indefinite cosymplectic space form to be semi-symmetric and parallel have been obtained. An example of non-totally geodesic Ricci semi-symmetric lightlike hypersurface in $R^7_2$ have been given.

On Almost Pseudo Conharmonically Symmetric Manifolds

  • Pal, Prajjwal
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.699-714
    • /
    • 2014
  • The object of the present paper is to study almost pseudo conharmonically symmetric manifolds. Some geometric properties of almost pseudo conharmonically symmetric manifolds have been studied under certain curvature conditions. Finally, we give three examples of almost pseudo conharmonically symmetric manifolds.

PSEUDO SYMMETRIC AND PSEUDO RICCI SYMMETRIC WARPED PRODUCT MANIFOLDS

  • De, Uday Chand;Murathan, Cengizhan;Ozgur, Cihan
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.615-621
    • /
    • 2010
  • We study pseudo symmetric (briefly $(PS)_n$) and pseudo Ricci symmetric (briefly $(PRS)_n$) warped product manifolds $M{\times}_FN$. If M is $(PS)_n$, then we give a condition on the warping function that M is a pseudosymmetric space and N is a space of constant curvature. If M is $(PRS)_n$, then we show that (i) N is Ricci symmetric and (ii) M is $(PRS)_n$ if and only if the tensor T defined by (2.6) satisfies a certain condition.

On N(κ)-Contact Metric Manifolds Satisfying Certain Curvature Conditions

  • De, Avik;Jun, Jae-Bok
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.4
    • /
    • pp.457-468
    • /
    • 2011
  • We consider pseudo-symmetric and Ricci generalized pseudo-symmetric N(${\kappa}$) contact metric manifolds. We also consider N(${\kappa}$)-contact metric manifolds satisfying the condition $S{\cdot}R$ = 0 where R and S denote the curvature tensor and the Ricci tensor respectively. Finally we give some examples.

η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds with a Semi-symmetric Metric Connection

  • Siddiqi, Mohd Danish
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.537-562
    • /
    • 2019
  • The aim of the present paper is to study the ${\delta}$-Lorentzian trans-Sasakian manifold endowed with semi-symmetric metric connections admitting ${\eta}$-Ricci Solitons and Ricci Solitons. We find expressions for the curvature tensor, the Ricci curvature tensor and the scalar curvature tensor of ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection. Also, we discuses some results on quasi-projectively flat and ${\phi}$-projectively flat manifolds endowed with a semi-symmetric-metric connection. It is shown that the manifold satisfying ${\bar{R}}.{\bar{S}}=0$, ${\bar{P}}.{\bar{S}}=0$ is an ${\eta}$-Einstein manifold. Moreover, we obtain the conditions for the ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection to be conformally flat and ${\xi}$-conformally flat.

STUDY OF GRADIENT SOLITONS IN THREE DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Biswas, Gour Gopal;De, Uday Chand
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.825-837
    • /
    • 2022
  • We characterize a three-dimensional Riemannian manifold endowed with a type of semi-symmetric metric P-connection. At first, it is proven that if the metric of such a manifold is a gradient m-quasi-Einstein metric, then either the gradient of the potential function 𝜓 is collinear with the vector field P or, λ = -(m + 2) and the manifold is of constant sectional curvature -1, provided P𝜓 ≠ m. Next, it is shown that if the metric of the manifold under consideration is a gradient 𝜌-Einstein soliton, then the gradient of the potential function is collinear with the vector field P. Also, we prove that if the metric of a 3-dimensional manifold with semi-symmetric metric P-connection is a gradient 𝜔-Ricci soliton, then the manifold is of constant sectional curvature -1 and λ + 𝜇 = -2. Finally, we consider an example to verify our results.

𝜂-RICCI SOLITONS ON 𝜖 - LP-SASAKIAN MANIFOLDS WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Haseeb, Abdul;Prasad, Rajendra
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.539-558
    • /
    • 2019
  • In this paper, we study ${\eta}$-Ricci solitons on ${\epsilon}$-LP-Sasakian manifolds with a quarter-symmetric metric connection satisfying certain curvature conditions. In particular, we have discussed that the Ricci soliton on ${\epsilon}$-LP-Sasakian manifolds with a quarter-symmetric metric connection satisfying certain curvature conditions is expanding or steady according to the vector field ${\xi}$ being timelike or spacelike. Moreover, we construct 3-dimensional examples of an ${\epsilon}$-LP-Sasakian manifold with a quarter-symmetric metric connection to verify some results of the paper.

RIEMANNIAN MANIFOLDS WITH A SEMI-SYMMETRIC METRIC P-CONNECTION

  • Chaubey, Sudhakar Kr;Lee, Jae Won;Yadav, Sunil Kr
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1113-1129
    • /
    • 2019
  • We define a class of semi-symmetric metric connection on a Riemannian manifold for which the conformal, the projective, the concircular, the quasi conformal and the m-projective curvature tensors are invariant. We also study the properties of semisymmetric, Ricci semisymmetric and Eisenhart problems for solving second order parallel symmetric and skew-symmetric tensors on the Riemannian manifolds equipped with a semi-symmetric metric P-connection.

EQUIVALENCE CONDITIONS OF SYMMETRY PROPERTIES IN LIGHTLIKE HYPERSURFACES OF INDEFINITE KENMOTSU MANIFOLDS

  • Lungiambudila, Oscar;Massamba, Fortune;Tossa, Joel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1259-1280
    • /
    • 2016
  • The paper deals with lightlike hypersurfaces which are locally symmetric, semi-symmetric and Ricci semi-symmetric in indefinite Kenmotsu manifold having constant $\bar{\phi}$-holomorphic sectional curvature c. We obtain that these hypersurfaces are totally goedesic under certain conditions. The non-existence condition of locally symmetric lightlike hyper-surfaces are given. Some Theorems of specific lightlike hypersurfaces are established. We prove, under a certain condition, that in lightlike hyper-surfaces of an indefinite Kenmotsu space form, tangent to the structure vector field, the parallel, semi-parallel, local symmetry, semi-symmetry and Ricci semi-symmetry notions are equivalent.