• Title/Summary/Keyword: Ricci curvature

Search Result 198, Processing Time 0.027 seconds

RIGIDITY OF COMPLETE RIEMANNIAN MANIFOLDS WITH VANISHING BACH TENSOR

  • Huang, Guangyue;Ma, Bingqing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1341-1353
    • /
    • 2019
  • For complete Riemannian manifolds with vanishing Bach tensor and positive constant scalar curvature, we provide a rigidity theorem characterized by some pointwise inequalities. Furthermore, we prove some rigidity results under an inequality involving $L^{\frac{n}{2}}$-norm of the Weyl curvature, the traceless Ricci curvature and the Sobolev constant.

ON WARPED PRODUCT SPACES WITH A CERTAIN RICCI CONDITION

  • Kim, Byung Hak;Lee, Sang Deok;Choi, Jin Hyuk;Lee, Young Ok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1683-1691
    • /
    • 2013
  • In this paper, we obtain the criteria that the Riemannian manifold B is Einstein or a gradient Ricci soliton from the information of the second derivative of $f$ in the warped product space $R{\times}_fB$ with gradient Ricci solitons. Moreover, we construct new examples of non-Einstein gradient Ricci soliton spaces with an Einstein or non-Einstein gradient Ricci soliton leaf using our main theorems. Finally we also get analogous criteria for the Lorentzian version.

HOPF HYPERSURFACES OF THE HOMOGENEOUS NEARLY KÄHLER 𝕊3 × 𝕊3 SATISFYING CERTAIN COMMUTING CONDITIONS

  • Xiaomin, Chen;Yifan, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1567-1594
    • /
    • 2022
  • In this article, we first introduce the notion of commuting Ricci tensor and pseudo-anti commuting Ricci tensor for Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3 and prove that the mean curvature of hypersurface is constant under certain assumptions. Next, we prove the nonexistence of Ricci soliton on Hopf hypersurface with potential Reeb vector field, which improves a result of Hu et al. on the nonexistence of Einstein Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3.

RIEMANNIAN SUBMERSIONS WHOSE TOTAL MANIFOLD ADMITS h-ALMOST RICCI-YAMABE SOLITON

  • Mehraj Ahmad Lone;Towseef Ali Wani
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.479-492
    • /
    • 2024
  • In this paper, we study Riemannian submersions whose total manifold admits h-almost Ricci-Yamabe soliton. We characterize the fibers of the submersion and see under what conditions the fibers form h-almost Ricci-Yamabe soliton. Moreover, we find the necessary condition for the base manifold to be an h-almost Ricci-Yamabe soliton and Einstein manifold. Later, we compute scalar curvature of the total manifold and using this we find the necessary condition for h-almost Yamabe solition to be shrinking, expanding and steady. At the end, we give a non-trivial example.

On Almost Pseudo Conharmonically Symmetric Manifolds

  • Pal, Prajjwal
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.699-714
    • /
    • 2014
  • The object of the present paper is to study almost pseudo conharmonically symmetric manifolds. Some geometric properties of almost pseudo conharmonically symmetric manifolds have been studied under certain curvature conditions. Finally, we give three examples of almost pseudo conharmonically symmetric manifolds.

CERTAIN RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH CONFORMAL REEB FOLIATION

  • Ghosh, Gopal;Majhi, Pradip
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.261-272
    • /
    • 2018
  • The object of the present paper is to study some curvature properties of almost Kenmotsu manifolds with conformal Reeb foliation. Among others it is proved that an almost Kenmotsu manifold with conformal Reeb foliation is Ricci semisymmetric if and only if it is an Einstein manifold. Finally, we study Yamabe soliton in this manifold.

SHARP INEQUALITIES INVOLVING THE CHEN-RICCI INEQUALITY FOR SLANT RIEMANNIAN SUBMERSIONS

  • Mehmet Akif Akyol;Nergiz (Onen) Poyraz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1155-1179
    • /
    • 2023
  • Main objective of the present paper is to establish Chen inequalities for slant Riemannian submersions in contact geometry. In this manner, we give some examples for slant Riemannian submersions and also investigate some curvature relations between the total space, the base space and fibers. Moreover, we establish Chen-Ricci inequalities on the vertical and the horizontal distributions for slant Riemannian submersions from Sasakian space forms.

ON 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS

  • De, Uday Chand;Mondal, Abul Kalam
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • The object of the present paper is to study 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions. Among others it is proved that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic normal almost contact metric manifold is a constant multiple of the associated metric tensor and there does not exist a non-zero parallel 2-form. Also we obtain some equivalent conditions on a 3-dimensional normal almost contact metric manifold and we prove that if a 3-dimensional normal almost contact metric manifold which is not a ${\beta}$-Sasakian manifold satisfies cyclic parallel Ricci tensor, then the manifold is a manifold of constant curvature. Finally we prove the existence of such a manifold by a concrete example.

THE STRUCTURE OF THE REGULAR LEVEL SETS

  • Hwang, Seung-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1245-1252
    • /
    • 2011
  • Consider the $L^2$-adjoint $s_g^{'*}$ of the linearization of the scalar curvature $s_g$. If ker $s_g^{'*}{\neq}0$ on an n-dimensional compact manifold, it is well known that the scalar curvature $s_g$ is a non-negative constant. In this paper, we study the structure of the level set ${\varphi}^{-1}$(0) and find the behavior of Ricci tensor when ker $s_g^{'*}{\neq}0$ with $s_g$ > 0. Also for a nontrivial solution (g, f) of $z=s_g^{'*}(f)$ on an n-dimensional compact manifold, we analyze the structure of the regular level set $f^{-1}$(-1). These results give a good understanding of the given manifolds.