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ON WARPED PRODUCT SPACES

WITH A CERTAIN RICCI CONDITION

Byung Hak Kim, Sang Deok Lee, Jin Hyuk Choi, and Young Ok Lee

Abstract. In this paper, we obtain the criteria that the Riemannian
manifold B is Einstein or a gradient Ricci soliton from the information
of the second derivative of f in the warped product space R ×f B with
gradient Ricci solitons. Moreover, we construct new examples of non-
Einstein gradient Ricci soliton spaces with an Einstein or non-Einstein
gradient Ricci soliton leaf using our main theorems. Finally we also get
analogous criteria for the Lorentzian version.

1. Introduction

In [5], R. S. Hamilton introduced the concept of Ricci solitons, which are
special solutions of the Ricci flow of Hamilton. Recently the study of gradient
Ricci solitons has become increasing and exhibits rich geometric properties.

A Riemannian metric g on a complete Riemannian manifold M is called a
Ricci soliton if there exists a smooth vector field X such that the Ricci tensor
satisfies the following equation

(1.1) Ric+
1

2
LXg = ρg

for some constant ρ, where LX is the Lie derivative with respect to X ([2, 3,
4, 7, 10, 11]).

The Ricci soliton is called shrinking if ρ > 0, steady if ρ = 0 and expanding
if ρ < 0. If X = ∇h for some function h on M , then M is called a gradient
Ricci soliton ([10]). In this case the equation (1.1) can be rewritten as

(1.2) Ric+Hess h = ρg.

It is well known that when ρ ≤ 0 all compact solitons are necessarily Einstein
([4]), and a Ricci soliton on a compact manifold has a constant curvature in
dimension 2 ([5]) as well as in dimension 3 ([6]). Moreover a Ricci soliton on
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a compact manifold is a gradient Ricci soliton ([7]), and a compact shrinking
soliton is always gradient ([9]).

On the other hand, in the noncompact case, Perelman ([9]) has studied
and classified the 3-dimensional shrinking gradient Ricci solitons with bounded
nonnegative sectional curvature.

Since the concept of Ricci solitons is a natural extension of an Einstein
manifold, it is meaningful to construct a non-Einstein gradient Ricci soliton and
study Riemannian product spaces or warped product spaces with a gradient
Ricci soliton. Indeed, for the study of Ricci soliton and construction of various
Ricci solitons, not only the relationship between the base space B and the total
space Rp ×B or R×f B with gradient Ricci solitons, but also criteria whether
B is an Einstein or non-Einstein gradient Ricci soliton in R ×f B are very
useful. Such relationships or criteria will give methods of the construction of
model space with non-Einstein gradient Ricci soliton which has an Einstein or
non-Einstein gradient Ricci soliton leaf.

In this paper, we review that the Riemannian product spaceM = Rp×B is a
gradient Ricci soliton if and only if B is a gradient Ricci soliton. Furthermore,
we obtain that, in the warped product space M = R ×f B with a gradient
Ricci soliton, B is Einstein (or non-Einstein gradient Ricci soliton) if the second
derivative of f is non-vanishing (or vanishing, respectively).

Using our main theorems, we can construct new examples of non-Einstein
gradient Ricci soliton spaces with an Einstein or non-Einstein gradient Ricci
soliton leaf.

Finally we consider the Lorentzian warped product spaces R ×f B with
gradient Ricci solitons and obtain criteria for B to be Einstein or a gradient
Ricci soliton, and find examples.

2. Gradient Ricci solitons in Riemannian product spaces

Let (B, g) be an n-dimensional Riemannian manifold with a Riemannian
metric g and let M = R × B be the product Riemannian manifold with the
Riemannian metric g̃ =

(
1 0
0 g

)
. Then the curvature tensors K̃ and K of M and

B, respectively, are given by K̃dcb
a = Kdcb

a and the others are zero, where
the range of indices a, b, c, . . . is {2, 3, . . . , n + 1}. Hence the Ricci curvature

tensors S̃ and S of M and B, respectively, are given by S̃ab = Sab and the
others are zero. The scalar curvatures r̃ and r of M and B, respectively, are
related by r̃ = r.

Suppose that B is a gradient Ricci soliton. Then Sab = ρgab−∇akb for some
smooth function k : B → R and a constant ρ on B.

Take h : R × B → R such that h(t, v2, . . . , vn+1) = ρ
2 t

2 + k(v2, . . . , vn+1)

for all (t, v2, . . . , vn+1) in R × B. Then we get S̃ab = Sab = ρgab − ∇akb =

ρg̃ab − ∇̃a∇̃bh, S̃a1 = 0 = −∇̃a∇̃1h, S̃11 = 0 = ρ − ∇̃1∇̃1h, where the indices
a, b, c, . . . run over the range {2, . . . , n+1}. Thus we see that if B is a gradient
Ricci soliton, then R×B is a gradient Ricci soliton.
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Conversely, if we suppose that R×B is a gradient Ricci soliton, then S̃ij =

ρg̃ij − ∇̃i∇̃jk for some smooth function k : R×B → R and for some constant
function ρ on R×B. So we get

(2.1) Sab = ρgab −∇a∇bk, ∂1ka = 0, ρ− ∂1k1 = 0.

From (2.1), we see that k and ρ are of the forms

(2.2) k = k(t, va) = m(t) + ℓ(va), m(t) =
1

2
ρt2 + µt+ ν

for t ∈ R, (va) = (v2, . . . , vn+1) ∈ B and constants µ, ν.
Since k(t, va) = (12ρt

2+ bt+ c)+ ℓ(va), we get Sab = ρgab−∇a∇bℓ. Hence B
is a gradient Ricci soliton. So, we can state if R×B is a gradient Ricci soliton,
then B is a gradient Ricci soliton. Therefore we see that the Riemannian
product space R × B is a gradient Ricci soliton if and only if B is a gradient
Ricci soliton.

Next consider the Riemannian product space M = Rp ×B. Then we have

(2.3) K̃dcb
a = Kdcb

a, S̃ab = Sab, r̃ = r

and the others are zero, where the range of indices a, b, c, . . . is {p + 1, p +

2, . . . , p+n}, and K̃, S̃, r̃(K,S, r respectively) are Riemannian curvature tensor,
Ricci curvature tensor and scalar curvature of M(B respectively).

Suppose that B is a gradient Ricci soliton. Then Sab = ρgab−∇akb for some
smooth function k : B → R and a constant ρ on B.

Take a function h : Rp ×B → R defined by

(2.4) h(ux, va) =
ρ

2
((u1)

2 + (u2)
2 + · · ·+ (up)

2) + k(va)

for all (ux, va) = (u1, u2, . . . , up, vp+1, vp+2, . . . , vp+n) in Rp × B. Then we
obtain

(2.5) S̃ab = ρg̃ab − ∇̃a∇̃bh, S̃ax = ρg̃ax − ∇̃a∇̃xh, S̃xy = ρg̃xy − ∇̃x∇̃yh

due to (2.3) and (2.4). Hence we see that if B is a gradient Ricci soliton, then
Rp×B is a gradient Ricci soliton. Since the standard n-sphere Sn is a gradient
Ricci soliton, applying this fact, Rp × Sn is a gradient Ricci soliton.

Suppose that Rp × B is a gradient Ricci soliton. Then S̃ij = ρg̃ij − ∇̃i∇̃jk

for some smooth function k : Rp×B → R and for some constant function ρ on
Rp×B, where the range of indies i, j, k, . . . is {1, 2, . . . , p+n}. Using (2.3), we
obtain

(2.6) Sab = ρgab −∇a∇bk, ∂xka = 0, ρδxy − ∂xky = 0,

where the range of indices x, y, z, . . . is {1, 2, . . . , p}. From (2.6)2, and (2.6)3,
we see that k(ux, va) = m(ux) + ℓ(va) for some smooth function ℓ on B and
m(ux) =

ρ
2

∑p
x=1(ux)

2. Hence we can see that ∇a∇bk = ∇a∇bℓ, Sab = ρgab −
∇a∇bℓ. Therefore we see that if Rp × B is a gradient Ricci soliton, then B is
a gradient Ricci soliton.
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From this fact and upper result, we see that if B is a gradient Ricci soliton
if and only if Rp ×B is a gradient Ricci soliton.

In [10], P. Petersen and W. Wylie proved that:

Theorem 2.1. If a gradient soliton splits (M, g) = (M1 × M2, g1 + g2) as a

Riemannian product, then f(x1, x2) = f1(x1)+ f2(x2) also splits in such a way

that each (Mi, gi, fi) is a soliton Ricgi +Hessfi = λgi.

In connection with Theorem 2.1, we can prove that:

Theorem 2.2. Let B × F be a gradient Ricci soliton for a function h(p, q) =
h1(p)+ h2(q) for (p, q) ∈ B×F . Then B and F are gradient Ricci solitons for

h1 and h2, respectively.

Proof. From assumptions, we have

(2.7) S̃ij + ∇̃i∇̃jh = ρg̃ij

for some constant ρ. Then we can see that

(2.8) Sab +∇a∇bh1 = ρgab, Sxy +∇x∇yh2 = ρgxy,

that is, B and F are gradient Ricci solitons for h1 and h2, respectively. �

From the relations of the (2.7) and (2.8), we can get the converse of the
Theorem 2.1.

Theorem 2.3. If B and F are gradient solitons for function h1 and h2, and

constants λ = µ respectively, then B×F is a gradient Ricci soliton for h1+ h2

and ρ = λ = µ.

3. Gradient Ricci solitons in warped product spaces

Consider the warped product space M = R ×f B with g̃ =
(

1 0
0 f2g

)
, where

f : R → R+ is a warping function, and g is a Riemannian metric on B. Let
K̃ and K be the curvature tensors of M and B, respectively. Then we have
K̃dcb

a = Kdcb
a − f2

1 (δ
a
dgcb − δac gdb), K̃1ab

1 = −ff11gab, K̃b11
a = − f11

f
δab ,

and the others are zero, where f1 = df
dt
, f11 = d2f

dt2
([1, 8]). Hence the Ricci

curvature tensors S̃ and S of M and B, respectively, are given by

(3.1)

S̃ab = Sab − ff11gab − (n− 1)f2
1 gab,

S̃a1 = 0,

S̃11 = −
nf11

f
.

The scalar curvatures r̃ and r of M and B, respectively, are related by

r̃ = r
f2 − 2nf11

f
−

n(n−1)f2
1

f2 .
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For any function h on M , the covariant derivatives are given by

(3.2)

∇̃a∇̃bh = ∇ahb + (ff1h1)gab,

∇̃a∇̃1h = ∂ah1 −
f1

f
ha,

∇̃1∇̃1h = ∇1∇1h,

where ∇̃ and ∇ are operators of the covariant derivatives on M and B, respec-
tively.

Suppose that M = R×f B is a gradient Ricci soliton, then we see that

(3.3)

S̃ab = ρg̃ab − ∇̃a∇̃bh = ρf2gab −∇ahb − ff1h1gab,

S̃1a = ρg̃1a − ∇̃1∇̃ah = −∂1ha +
f1

f
ha,

S̃11 = ρg̃11 − ∇̃1∇̃1h = ρ−∇1∇1h,

where ρ is constant on M and h1 = dh
dt
. Using (3.1) and (3.3), we obtain

(3.4)

Sab − ff11gab − (n− 1)f2
1 gab = ρf2gab −∇ahb − ff1h1gab,

∂1ha =
f1

f
ha,

∇1∇1h = ρ+
nf11

f
.

Consider the case that f11(t) 6= 0 for the warping function f . Assume that
ha = ∂h

∂va
6= 0, where a = 2, 3, . . . , n+ 1. Then from (3.4)2, we get

(3.5)
∂

∂t
(lnha) =

∂tha

ha

=
f1

f
=

d

dt
(lnf).

Hence we successively obtain lnha= lnf+ℓ(v2, . . . , vn+1), ha= feℓ(v2,...,vn+1),
h = f

∫
eℓ(v2,...,vn+1)dva, and

(3.6)
∂2h

∂t2
= f11(t)

∫
eℓ(v2,...,vn+1)dva.

From (3.4)3 and the fact that ∇1∇1h = ∂2h
∂t2

, we see that ∂2h
∂t2

depends only
on t. Henceforth the right-hand side of the equation (3.6) also depends only
on t. In this case,

∫
eℓ(v2,...,vn+1)dva is either constant or a function of t. But

this is impossible. Hence we get ∂h
∂va

= 0. From this fact and (3.4)1, the Ricci
curvature S on B becomes

Sab = {ff11 + (n− 1)f2
1 + ρf2 − ff1h1}gab ≡ Agab.

Since ∂h
∂va

= 0, the function ∂A
∂va

= 0. So A is constant on B. This means
that B is an Einstein space. Therefore we have:

Theorem 3.1. Let M = R ×f B be a gradient Ricci soliton and f11(t) 6= 0.
Then B is an Einstein space.
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Next consider the case f11(t) = 0. Then f is of the form f(t) = at + b,
where a and b are constants. Since f is positive on R, f should be of the form
f = b(> 0). Then M is the Riemannian product of R and B. Hence we can
state:

Theorem 3.2. Let M = R ×f B be a gradient Ricci soliton and f11(t) = 0.
Then B is a gradient Ricci soliton.

In the warped product space M = R ×f B with a gradient Ricci soliton, if
f11 6= 0, then the base space B is Einstein from Theorem 3.1. Due to Theorem
3.2, we see that B is a gradient Ricci soliton when f11 = 0, but we can’t decide
whether B is Einstein or non-Einstein.

Consider the spaceM = R×cS
n(k), where Sn(k) is the n-sphere with radius

k. Then M is a gradient Ricci soliton but non-Einstein by use of (3.1). Hence
we have:

Example 3.3. R ×c S
n(k) is a non-Einstein gradient Ricci soliton with an

Einstein leaf Sn(k).

Consider the space N = R × (R ×c S
n(k)). Then N is a gradient Ricci

soliton, but R×c S
n(k) is not an Einstein space. Thus we can state:

Example 3.4. The space N = R × (R ×c S
n(k)) is a gradient Ricci soliton

but R×c S
n(k) is not an Einstein space.

In conclusion, Theorems 3.1 and 3.2 give a criterion whether the base space
B is Einstein or a gradient Ricci soliton in the total space R×f B through the
calculation of f11.

4. Gradient Ricci solitons in Lorentzian warped product spaces

The Lorentzian metric in the warped product space M = R×f B is given by

g̃ =
(

−1 0
0 f2g

)
, where f : R → R+ is a warping function, and g is a Riemann-

ian metric on B. Then we can see that
{

˜1
ab

}
= ff1gab,

{
˜
a
b1

}
= f1

f
δab ,{

˜
a
bc

}
=

{
a
bc

}
, and the others are zero, where the range of indices a, b, c, . . .

is {2, 3, . . . , n+ 1}.

The curvature K̃ and K of M and B are given by K̃dcb
a = Kdcb

a +
f2
1 (δ

a
dgcb − δac gdb), K̃1ab

1 = ff11gab, K̃b11
a = − f11

f
δab , and the others are

zero. Hence the Ricci curvature tensors S̃ and S of M and B, respectively, are
reduced to

(4.1)

S̃ab = Sab + ff11gab + (n− 1)f2
1 gab,

S̃a1 = 0,

S̃11 = −
nf11

f
,
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and the scalar curvatures r̃ and r of M and B, respectively, are related by

r̃ = r
f2 + 2nf11

f
+

n(n−1)f2
1

f2 .

Hence, for any function h on M , the covariant derivatives are given by

(4.2)

∇̃a∇̃bh = ∇ahb − (ff1h1)gab,

∇̃a∇̃1h = ∂ah1 −
f1

f
ha,

∇̃1∇̃1h = ∇1∇1h,

where ∇̃ and ∇ are operators of the covariant derivatives on M and B, respec-
tively.

If M = R×f B is a gradient Ricci soliton, then we obtain

(4.3)

S̃ab = ρg̃ab − ∇̃a∇̃bh = ρf2gab −∇ahb + ff1h1gab,

S̃1a = ρg̃1a − ∇̃1∇̃ah = −∂1ha +
f1

f
ha,

S̃11 = ρg̃11 − ∇̃1∇̃1h = −ρ−∇1∇1h,

where ρ is constant on M .
By use of (4.1) and (4.3), we obtain

(4.4)

Sab + ff11gab + (n− 1)f2
1 gab = ρf2gab −∇ahb + ff1h1gab,

∂1ha =
f1

f
ha,

∇1∇1h = −ρ+
nf11

f
.

At first, let us consider the case that f11(t) 6= 0 for the warping function f .
Assume that ha = ∂h

∂va
6= 0. Then from (4.4)2, we get

(4.5)
∂

∂t
(lnha) =

∂tha

ha

=
f1

f
=

d

dt
(lnf).

Hence we successively obtain lnha= lnf+ℓ(v2, . . . vn+1), ha= feℓ(v2,...,vn+1),
h = f

∫
eℓ(v2,...,vn+1)dva and

(4.6)
∂2h

∂t2
= f11(t)

∫
eℓ(v2,...,vn+1)dva.

Thus using (4.4)3 and the fact that ∇1∇1h = ∂2h
∂t2

, we see that ∂2h
∂t2

depends
only on t. Henceforth the right-hand side of the equation (4.6) also depends
only on t. So,

∫
eℓ(v2,...,vn+1)dva is either a constant or a function of t. But

this is impossible. Hence we get ∂h
∂va

= 0. From this fact and (4.4)1, the Ricci
curvature S on B becomes

Sab = {−ff11 + (n− 1)f2
1 + ρf2 + ff1h1}gab ≡ Dgab.
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Since ∂h
∂va

= 0, the function ∂D
∂va

= 0. So D is constant on B. This means that
B is an Einstein space. Therefore we have:

Theorem 4.1. Let Lorentzian warped product space M = R×fB be a gradient

Ricci soliton and f11(t) 6= 0. Then B is an Einstein space.

Lemma 4.2. If R × B is the Lorentzian product space, then B is a gradient

Ricci soliton.

Proof. By the similar method in (2.1) and (2.2) with m(t) = − 1
2ρt

2 + µt+ ν,
we can prove the lemma. �

Next, assume that f11(t) = 0. Then f is of the form f(t) = at + b, where
a and b are constants. By the same method of the proof of Theorem 3.2, f
should be of the form f = b(> 0). Then M = R×f B is a Lorentzian product
space M = R×bB. From this fact and Lemma 4.2, we see that B is a gradient
Ricci soliton. Hence we have:

Theorem 4.3. Let Lorentzian warped product space M = R×fB be a gradient

Ricci soliton and f11(t) = 0. Then B is a gradient Ricci soliton.

By the analogous argument of the Riemannian case in Chapter 3, we have:

Example 4.4. The space R×cS
n(k) with a Lorentzian metric is a non-Einstein

gradient Ricci soliton with an Einstein leaf Sn(k).

Example 4.5. The space N = R × (R ×c S
n(k)) is a gradient Ricci soliton,

but R×c S
n(k) is not an Einstein space.

References

[1] A. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.
[2] H. D. Cao, Geometry of Ricci solitons, Lecture note, Lehigh Univ., 2008.
[3] M. Eminenti, G. La Nave, and C. Mantegazza, Ricci solitons: the equation point of view,

Manuscripta Math. 127 (2008), no. 3, 345–367.
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