• 제목/요약/키워드: Ricci curvature

검색결과 198건 처리시간 0.027초

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.

RICCI 𝜌-SOLITONS ON 3-DIMENSIONAL 𝜂-EINSTEIN ALMOST KENMOTSU MANIFOLDS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.613-623
    • /
    • 2020
  • The notion of quasi-Einstein metric in theoretical physics and in relation with string theory is equivalent to the notion of Ricci soliton in differential geometry. Quasi-Einstein metrics or Ricci solitons serve also as solution to Ricci flow equation, which is an evolution equation for Riemannian metrics on a Riemannian manifold. Quasi-Einstein metrics are subject of great interest in both mathematics and theoretical physics. In this paper the notion of Ricci 𝜌-soliton as a generalization of Ricci soliton is defined. We are motivated by the Ricci-Bourguignon flow to define this concept. We show that if a 3-dimensional almost Kenmotsu Einstein manifold M is a 𝜌-soliton, then M is a Kenmotsu manifold of constant sectional curvature -1 and the 𝜌-soliton is expanding with λ = 2.

THE CHERN SECTIONAL CURVATURE OF A HERMITIAN MANIFOLD

  • Pandeng Cao;Hongjun Li
    • 대한수학회보
    • /
    • 제61권4호
    • /
    • pp.897-906
    • /
    • 2024
  • On a Hermitian manifold, the Chern connection can induce a metric connection on the background Riemannian manifold. We call the sectional curvature of the metric connection induced by the Chern connection the Chern sectional curvature of this Hermitian manifold. First, we derive expression of the Chern sectional curvature in local complex coordinates. As an application, we find that a Hermitian metric is Kähler if the Riemann sectional curvature and the Chern sectional curvature coincide. As subsequent results, Ricci curvature and scalar curvature of the metric connection induced by the Chern connection are obtained.

CURVATURES ON THE ABBENA-THURSTON MANIFOLD

  • Han, Ju-Wan;Kim, Hyun Woong;Pyo, Yong-Soo
    • 호남수학학술지
    • /
    • 제38권2호
    • /
    • pp.359-366
    • /
    • 2016
  • Let H be the 3-dimensional Heisenberg group, ($G=H{\times}S^1$, g) a product Riemannian manifold of Riemannian manifolds H and S with arbitrarily given left invariant Riemannian metrics respectively, and ${\Gamma}$ the discrete subgroup of G with integer entries. Then, on the Riemannian manifold ($M:=G/{\Gamma}$, ${\Pi}^*g=\bar{g}$), ${\Pi}:G{\rightarrow}G/{\Gamma}$, we evaluate the scalar curvature and the Ricci curvature.

h-almost Ricci Solitons on Generalized Sasakian-space-forms

  • Doddabhadrappla Gowda, Prakasha;Amruthalakshmi Malleshrao, Ravindranatha;Sudhakar Kumar, Chaubey;Pundikala, Veeresha;Young Jin, Suh
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.715-728
    • /
    • 2022
  • The aim of this article is to study the h-almost Ricci solitons and h-almost gradient Ricci solitons on generalized Sasakian-space-forms. First, we consider h-almost Ricci soliton with the potential vector field V as a contact vector field on generalized Sasakian-space-form of dimension greater than three. Next, we study h-almost gradient Ricci solitons on a three-dimensional quasi-Sasakian generalized Sasakian-space-form. In both the cases, several interesting results are obtained.

ON GENERALIZED QUASI-CONFORMAL N(k, μ)-MANIFOLDS

  • Baishya, Kanak Kanti;Chowdhury, Partha Roy
    • 대한수학회논문집
    • /
    • 제31권1호
    • /
    • pp.163-176
    • /
    • 2016
  • The object of the present paper is to introduce a new curvature tensor, named generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. Flatness and symmetric properties of generalized quasi-conformal curvature tensor are studied in the frame of (k, ${\mu}$)-contact metric manifolds.