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A NOTE ON THE GENERALIZED MYERS THEOREM FOR

FINSLER MANIFOLDS

Bing-Ye Wu

Abstract. In this note we establish a generalized Myers theorem under
line integral curvature bound for Finsler manifolds.

1. Introduction

The celebrated Myers theorem in global Riemannian geometry says that if
a Riemannian manifold M satisfies Ric(v) ≥ (n − 1)a > 0 for all unit vector
v, then M is compact and

diam(M) ≤ π√
a
.

There are many generalizations of Myers theorem (see e.g., [2, 3, 7]). In [7] the
author proved the following result.

Theorem 1.1. Let (M, g) be an n-dimensional complete Riemannian manifold.

Then for any δ > 0, a > 0, there exists ǫ = ǫ(n, a, δ) satisfying the following.

If for any p ∈ M and each minimal geodesic γ emanating from p, the Ricci

curvature satisfies
∫

γ

max{(n− 1)a−Ric(γ′(t)), 0}dt ≤ ǫ(n, a, δ),

then M is compact with

diam(M) ≤ π√
a
+ δ.

Myers theorem has also been generalized to Finsler manifolds [1]. In this
note we shall prove the following result which generalizes Theorem 1.1.

Theorem 1.2. Let (M,F ) be an n-dimensional forward complete Finsler man-

ifold. If there is Λ > 0 such that for any p ∈ M and each minimal geodesic γ
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emanating from p, the Ricci curvature satisfies
∫

γ

max{(n− 1)a−Ric(γ′(t)), 0}dt ≤ Λ,

then M is compact with

diam(M) ≤ π√
a
+

Λ

(n− 1)a
.

2. Finsler geometry

In this section we briefly recall some fundamental materials of Finsler geom-
etry, and for details one is referred to see [1, 4, 5, 6]. Let (M,F ) be a Finsler
n-manifold with Finsler metric F : TM → [0,∞). Let (x, y) = (xi, yi) be local
coordinates on TM , and π : TM\0 → M the natural projection. Unlike in the
Riemannian case, most Finsler quantities are functions of TM rather than M .
The fundamental tensor gij is defined by

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
.

Let R i
j kl be the first Chern curvature tensor, and Rijkl := gjsR

s
i kl. Write

gy = gij(x, y)dx
i ⊗ dxj ,Ry = Rijkl(x, y)dx

i ⊗ dxj ⊗ dxk ⊗ dxl. For a tangent
plane P ⊂ TxM , let

K(P, y) = K(y;u) :=
Ry(y, u, u, y)

gy(y, y)gy(u, u)− [gy(y, u)]2
,

where y, u ∈ P are tangent vectors such that P = span{y, u}. We call K(P, y)
the flag curvature of P with flag pole y. Let

Ric(y) =
∑

i

K(y; ei),

where {e1, . . . , en} is a gy-orthogonal basis for the corresponding tangent space.
We call Ric(y) the Ricci curvature of y.

Let V = vi∂/∂xi be a non-vanishing vector field on an open subset U ⊂ M .
One can introduce a Riemannian metric g̃ = gV and a linear connection ∇V

(called Chern connection) on the tangent bundle over U as follows:

∇V
∂

∂xi

∂

∂xj
:= Γk

ij(x, v)
∂

∂xk
,

where Γi
jk(x, v) are the Chern connection coefficients.

The Legendre transformation l : TM → T ∗M is defined by

l(Y ) =

{
gY (Y, ·), Y 6= 0
0, Y = 0.

Now let f : M → R be a smooth function on M . The gradient of f is defined
by ∇f = l−1(df). Thus we have

df(X) = g∇f (∇f,X), X ∈ TM.
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Let U = {x ∈ M : ∇f |x 6= 0}. We define the Hessian H(f) of f on U as
follows:

H(f)(X,Y ) := XY (f)−∇∇f
X Y (f), ∀X,Y ∈ TM |U .

It is known that H(f) is symmetric, and it can be rewritten as (see [6])

H(f)(X,Y ) = g∇f (∇∇f
X ∇f, Y ).

It should be noted that the notion of Hessian defined here is different from that
in [4]. In that case H(f) is in fact defined by

H(f)(X,X) = X ·X · (f)−∇X
XX(f),

and there is no definition for H(f)(X,Y ) if X 6= Y . The advantage of our
definition is that H(f) is a symmetric bilinear form and we can treat it by
using the theory of symmetric matrix. For any fixed p ∈ M let r = dF (p, ·) be
the distance function from p induced by Finsler metric F , and (r, θ) the polar
coordinates on M\C(p), where C(p) is the cut loci of p. The following lemma
is crucial to prove Theorem 1.2.

Lemma 2.1. Let h = h(r, θ) = traceg
∇r

H(r). Then limr→+0 h = +∞, and

dh

dr
≤ −Ric(∇r) − h2

n− 1
.

Proof. Let E1, . . . , En−1, En = ∇r be the local g
∇r

-orthonormal frame fields
on M\C(p). We have the following equality where r is smooth (see (5.1) of
[6]):

d

dr
traceg

∇r
H(r) = −Ric(∇r) −

∑

i,j

(H(r)(Ei, Ej))
2.

Note that ∇r is a geodesic field, and thus H(r)(∇r, ·) = 0, which together with
above equality and Schwartz inequality we clearly have the desired inequality.
On the other hand, for sufficiently small ǫ let b be the upper bound of flag
curvature on Bp(ǫ), then by Hessian comparison theorem [6] it follows that

h(r, θ) ≥ (n− 1)ctb(r) =






(n− 1)
√
b · cotan(

√
br), b > 0

n−1
r

, b = 0

(n− 1)
√
−b · cotanh(

√
−br), b < 0

, ∀r < ǫ,

and consequently, limr→+0 h = +∞. �

3. Proof of Theorem 1.2

Now let us complete the proof of Theorem 1.2. For any fixed p, q ∈ M
let γ : [0, L] → M be the minimal unit-speeded geodesic from p to q with
L = r(q) = dF (p, q). Let h = h(r, θ) be defined by Lemma 2.1, and consider
f = f(t) := h(γ(t)), then f is smooth on (0, L). By Lemma 2.1 one has

f ′(t) ≤ −Ric(γ′(t)) − f(t)2

n− 1
,
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and consequently,
(
arccot

(
f

(n− 1)
√
a

))′

=
− 1

(n−1)
√
a
f ′

1 + f2

(n−1)2a

≥
Ric(γ′) + f2

n−1(
1 + f2

(n−1)2a

)
(n− 1)

√
a

(1)

=
Ric(γ′)− (n− 1)a+ (n− 1)a

(
1 + f2

(n−1)2a

)

(
1 + f2

(n−1)2a

)
(n− 1)

√
a

≥ − 1

(n− 1)
√
a
max{(n− 1)a−Ric(γ′), 0}+

√
a.

For any small ǫ > 0 integrating (1) on (ǫ, L− ǫ) we get

π − arccot

(
f(ǫ)

(n− 1)
√
a

)

> arccot

(
f(L− ǫ)

(n− 1)
√
a

)
− arccot

(
f(ǫ)

(n− 1)
√
a

)
(2)

≥ − 1

(n− 1)
√
a

∫ L−ǫ

ǫ

max{(n− 1)a−Ric(γ′(t)), 0}dt+ (L − 2ǫ)
√
a.

On the other hand, limt→+0 f(t) = +∞ by Lemma 2.1, and thus

lim
t→+0

arccot

(
f(t)

(n− 1)
√
a

)
= 0.

Now let ǫ → +0 in (2) it follows that

π ≥ − 1

(n− 1)
√
a

∫ L

0

max{(n− 1)a−Ric(γ′(t)), 0}dt+ L
√
a

≥ − Λ

(n− 1)
√
a
+ L

√
a,

and consequently,

L ≤ π√
a
+

Λ

(n− 1)a
.

So we complete the proof.
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