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A NOTE ON THE GENERALIZED MYERS THEOREM FOR
FINSLER MANIFOLDS

BiNG-YE WU

ABSTRACT. In this note we establish a generalized Myers theorem under
line integral curvature bound for Finsler manifolds.

1. Introduction

The celebrated Myers theorem in global Riemannian geometry says that if
a Riemannian manifold M satisfies Ric(v) > (n — 1)a > 0 for all unit vector
v, then M is compact and
diam(M) < %.
There are many generalizations of Myers theorem (see e.g., [2, 3, 7]). In [7] the
author proved the following result.

Theorem 1.1. Let (M, g) be an n-dimensional complete Riemannian manifold.
Then for any 6 > 0,a > 0, there exists € = €(n,a,d) satisfying the following.
If for any p € M and each minimal geodesic v emanating from p, the Ricci
curvature satisfies

/max{(n —1)a — Ric(y/(t)),0}dt < e(n,a,d),

then M is compact with
diam(M) < % + 0.

Myers theorem has also been generalized to Finsler manifolds [1]. In this
note we shall prove the following result which generalizes Theorem 1.1.

Theorem 1.2. Let (M, F) be an n-dimensional forward complete Finsler man-
ifold. If there is A > 0 such that for any p € M and each minimal geodesic -y
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emanating from p, the Ricci curvature satisfies
/max{(n —1)a — Ric(v/(t)),0}dt < A,
~

then M is compact with
A

diam(M) < % + m.

2. Finsler geometry

In this section we briefly recall some fundamental materials of Finsler geom-
etry, and for details one is referred to see [1, 4, 5, 6]. Let (M, F) be a Finsler
n-manifold with Finsler metric F': TM — [0,00). Let (z,y) = (2¢,y") be local
coordinates on TM, and 7 : TM\0 — M the natural projection. Unlike in the
Riemannian case, most Finsler quantities are functions of T'M rather than M.
The fundamental tensor g;; is defined by

102F?(x,y)
9ij(®,y) = gw
Let Rjikl be the first Chern curvature tensor, and R;ji := g;.R;%,. Write
gy = gij (v, y)dz' @ dz? Ry, = Rjjri(2,y)ds’ @ do? @ da* @ da'. For a tangent
plane P C T, M, let
_ Ry (y,u,u,y)
gy(Y, v)gy(u,u) — [gy(y,u)]Q’

where y,u € P are tangent vectors such that P = span{y,u}. We call K(P,y)
the flag curvature of P with flag pole y. Let

Ric(y) = ZK(y;ei),

K(P’y) = K(y7u) :

where {e1,...,e,} is a g,-orthogonal basis for the corresponding tangent space.
We call Ric(y) the Ricci curvature of y.

Let V =0'9/0z" be a non-vanishing vector field on an open subset & C M.
One can introduce a Riemannian metric ¢ = gy and a linear connection VV
(called Chern connection) on the tangent bundle over U as follows:

0 0
Ve — —,
57 O Oxk
where 1"; (@, v) are the Chern connection coefficients.
The Legendre transformation | : TM — T*M is defined by
— 8y (Ya ')a Y 7é 0
)= { 0, Y =0.
Now let f : M — R be a smooth function on M. The gradient of f is defined
by Vf = 171(df). Thus we have

df(X):gi(vf’X)a X eTM.

_ Tk
=T (z,v)



A NOTE ON THE GENERALIZED MYERS THEOREM 835

Let U = {x € M : Vf |.# 0}. We define the Hessian H(f) of f on U as
follows:
H(f)(X,Y):=XY(f) = VY'Y (f), VXY €TM |y .
It is known that H(f) is symmetric, and it can be rewritten as (see [6])
H(f)(X,Y) = gvs (VX' VLY).
It should be noted that the notion of Hessian defined here is different from that
in [4]. In that case H(f) is in fact defined by
H(f)(X,X)=X-X-(f) = VXX(f),

and there is no definition for H(f)(X,Y) if X # Y. The advantage of our
definition is that H(f) is a symmetric bilinear form and we can treat it by
using the theory of symmetric matrix. For any fixed p € M let r = dp(p,-) be
the distance function from p induced by Finsler metric F, and (r, ) the polar
coordinates on M\C(p), where C(p) is the cut loci of p. The following lemma
is crucial to prove Theorem 1.2.

Lemma 2.1. Let h = h(r,0) = traceg_ H(r). Then lim,_,1oh = +o0, and

dh h?
' < _Ri — )
o S Ric(Vr) p—]
Proof. Let Ey,...,E,_1,E, = Vr be the local g -orthonormal frame fields
on M\C(p). We have the following equality where r is smooth (see (5.1) of

[6]):

d .
-traceg H(r) = —Ric(Vr) - Z(H(r)(Ei, E;))2.
ij
Note that Vr is a geodesic field, and thus H(r)(Vr,-) = 0, which together with
above equality and Schwartz inequality we clearly have the desired inequality.
On the other hand, for sufficiently small € let b be the upper bound of flag
curvature on By (¢€), then by Hessian comparison theorem [6] it follows that

(n —1)v/b - cotan(v/br), b>0
h(r,0) > (n—ecty(r) = ¢ ==L, b=0

(n — 1)v/=b - cotanh(v/—br), b<0

and consequently, lim,_, g h = +o00. (I

, Vr<e,

3. Proof of Theorem 1.2

Now let us complete the proof of Theorem 1.2. For any fixed p,q € M
let v : [0,L] — M be the minimal unit-speeded geodesic from p to ¢ with
L =7r(q) =dr(p,q). Let h = h(r,0) be defined by Lemma 2.1, and consider
f=f{t):=h(y(t)), then f is smooth on (0, L). By Lemma 2.1 one has

f(t)?

7'(t) < ~Ric(y' (1) - T
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and consequently,

1 !

f ))' vt

arccot [ ————— =
( ((n - 1)\/a 1+ (n_fm

(1)

\%
3
L

2

(1 + mfm) (n—1)ya
Ric(r') = (n = Da+ (n = Da (1+ 545 )
(1 + ﬁ) (n—1)va
> 7m max{(n — 1)a — Ric(y'),0} + vVa.
For any small € > 0 integrating (1) on (e, L — €) we get

R )

(2) > arccot (@{(Lil_)f/)a) — arccot ((nﬂ)

- m / B max{(n — 1)a — Ric(y/(t)),0}dt + (L — 2¢)va.

On the other hand, lim; ¢ f(¢) = 400 by Lemma 2.1, and thus

t

lim arccot L =0.
t—-+0 (n—1)v/a

Now let € — +0 in (2) it follows that

1 L .
> m/o max{(n — 1)a — Ric(y/(t)),0}dt + L/a
A
N CEV ARG

and consequently,

A

L< il +
~Va (n—1)a
So we complete the proof.
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