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Abstract. The aim of this article is to study the h-almost Ricci solitons and h-almost
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Sasakian-space-form of dimension greater than three. Next, we study h-almost gradient

Ricci solitons on a three-dimensional quasi-Sasakian generalized Sasakian-space-form. In

both the cases, several interesting results are obtained.

1. Introduction

Nowadays, the Ricci solitons and their generalizations are enjoying rapid growth
by providing new techniques in understanding the geometry and topology of arbi-
trary Riemannian manifolds. Ricci soliton is a natural generalization of Einstein
metric, and is also a self-similar solution to Hamilton’s Ricci flow [20, 21]. It plays
a specific role in the study of singularities of the Ricci flow. A solution g(t) of the
non-linear evolution PDE: ∂

∂t
g(t) = −2S(g(t)) is called the Ricci flow, where S is

the Ricci tensor associated to the metric g. In differential geometry, the Ricci flow
is a process that deforms the metric of a Riemannian manifold in a way formally
analogous to the diffusion of heat, smoothing out irregularities in the metric. A
Riemannian manifold (M, g) is called a Ricci soliton if there are a smooth vector
field V and a scalar λ ∈ R such that

(1.1) S +
1

2
£V g = λg

on M , where S is the Ricci tensor and £V g is the Lie derivative of the metric g

along V . If the potential vector field V vanishes identically, then the Ricci soliton
becomes trivial, and in this case manifold is an Einstein one. A Ricci soliton is
said to be a gradient Ricci soliton if the potential vector field V can be expressed
as a gradient of a smooth function u on M , i.e., V = Du, where D is the gradient
operator of g on M . An important application of the Ricci flow is the proof for
Thurston’s Conjecture given recently by Perelman [32]: A Ricci soliton on any
compact Riemannian manifold is always a gradient Ricci soliton. We recommend
the papers [8, 11, 12, 13, 17, 18, 28, 40] and the references therein for more details
about the study of Ricci solitons, gradient Ricci solitons and their generalizations
in the context of contact Riemannian geometry.

The generalized version of Ricci soliton, so called almost Ricci soliton was intro-
duced in the paper [33] by treating the soliton constant λ as a smooth function. It
is noted from [5] that a compact almost Ricci soliton with constant scalar curvature
is isometric to Euclidean sphere. Later in [38], Sharma studied Ricci almost solitons
in K-contact geometry and Ghosh [16] studied Ricci almost solitons and gradient
Ricci almost solitons in (κ, µ)-contact geometry. Recently, Wang-Gomes-Xia [39]
extended the notion of almost Ricci soliton to h-almost Ricci soliton. According to
[39], a complete connected Riemannian manifold (M2n+1, g) is said to be h-almost
Ricci soliton if there exists a smooth vector field V on M2n+1 such that

(1.2) S +
h

2
£V g = λg

where λ and h are smooth functions onM2n+1. Here, λ is called soliton function and
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V is called the potential vector field of h-almost Ricci soliton. This notion is denoted
by (M2n+1, g, V, h, λ). An h-almost Ricci soliton is called: (i) shrinking, when the
soliton constant λ is positive; (ii) steady, when λ is zero and (iii) expanding, when
λ is negative. If the potential vector field V can be expressed as a gradient of a
smooth function u on M , i.e., V = Du, where D is the gradient operator of g on
M , then the h-almost Ricci soliton equation becomes

(1.3) S + hHess u = λg

(where, Hess u = ∇2u denotes the Hessian of the smooth function u) and char-
acterizes what is called h-almost gradient Ricci soliton. The problem of studying
h-almost Ricci solitons and h-almost gradient Ricci solitons in the context of contact
metric geometry was initiated by Ghosh-Patra [19]. In particular, they studied h-
almost Ricci solitons and h-almost gradient Ricci solitons on a K-contact manifold
and proved that if a compact K-contact metric is h-almost gradient Ricci soliton
then it is isometric to a unit sphere S2n+1. More recently, Kar-Majhi [26] studied
(κ, µ)-almost co-Kähler manifold which admits h-almost Ricci soliton and h-almost
gradient Ricci soliton. Also, h-almost Ricci solitons on Sasakian 3-manifolds was
studied in the paper [29]. Motivated by the above studies, in this paper we un-
dertake the study of h-almost Ricci solitons on almost contact metric manifolds,
particularly, on generalized Saskian-space-forms. Before to proceed further, we re-
call that, Ricci solitons and η-Ricci solitons on generalized Sasakian-space-forms
were studied in the paper [31]. Further, the study of invariant submanifolds of
generalized Sasakian-space-forms was recorded in [25].

The paper is organized as follows: Section 2 is concerned with the preliminaries
on generalized Sasakian-space-forms. In section 3, h-almost Ricci soliton on a (2n+
1)-dimensional (n > 1) generalized Sasakian-space-form M2n+1(f1, f2, f3) with the
potential vector field as a contact vector field is being considered and prove that in
such a case the manifold has a constant scalar curvature and the flow vector field is
Killing. Next, we also show that the manifold M2n+1(f1, f2, f3) is locally symmetric
and has a constant φ-sectional curvature provided the characteristic vector field ξ is
Killing. In the last section, we study three-dimensional quasi-Sasakian generalized
Sasakian-space-form M3(f1, f2, f3) with f1 6= f3 admitting h-almost gradient Ricci
soliton and prove that in this situation the manifold M3(f1, f2, f3) is of constant
curvature f1 − f3.

2. Preliminaries

A (2n+1)-dimensional differentiable manifoldM2n+1 is called an almost contact
manifold (see, Blair [7]) equipped with the structure (φ, ξ, η) where φ is a tensor
field of type (1,1), ξ a characteristic or Reeb vector field and η is a 1-form satisfying

(2.1) φ2(X) = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0

for all vector fieldX onM2n+1. In general, a differentiable manifoldM2n+1 together
with the almost contact structure (φ, ξ, η) is said to be an almost contact manifold
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and it is denoted by (M2n+1, φ, ξ, η). If an almost contact manifold (M2n+1, φ, ξ, η)
admits a Riemannian metric g satisfying

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X , Y on M2n+1, then the manifold is called an almost contact
metric manifold and is denoted by (M2n+1, φ, ξ, η, g). Then from (2.2), it can be
easily deduced that g(φX, Y ) = −g(X,φY ). The fundamental 2-form dη associate
with the almost contact metric structure is defined by

(2.3) dη(X,Y ) = g(X,φY )

for any vector fields X and Y .
An almost contact metric manifold (M2n+1, φ, ξ, η) is said to be a generalized

Sasakian-space-form if the curvature tensor of the manifold satisfies

(2.4) R(X,Y )Z = f1R1 + f2R2 + f3R3

for some smooth functions f1, f2 and f3 on M2n+1, where R1, R2 and R3 are
curvature-like tensors given by

R1(X,Y )Z = g(Y, Z)X − g(X,Z)Y,

R2(X,Y )Z = g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ,

R3(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

for any vector fields X,Y, Z on M2n+1. In such case we will write the manifold as
M2n+1(f1, f2, f3). Moreover, Sasakian, cosymplectic or/and Kenmotsu space forms
are the typical examples of generalized Sasakian-space-forms. This almost contact
counterpart was introduced and studied by Alegre-Blair-Carriazo [1] in 2004. Since
then, several papers have appeared concerning different aspects of this topic. At
this point, we recommend the papers [2, 3, 4, 10, 14, 22, 23, 24, 27, 34, 35, 36, 37]
and the references therein to reader for a wide and detailed overview of the results
on generalized Sasakian-space-forms.

In addition to the relation (2.4), for a (2n+1)-dimensional (n > 1) generalized
Sasakian-space-form M2n+1(f1, f2, f3) the following relations also hold [1]:

R(X,Y )ξ = (f1 − f3){η(Y )X − η(X)Y },(2.5)

R(ξ,X)Y = (f1 − f3){g(X,Y )ξ − η(Y )X},(2.6)

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− {3f2 + (2n− 1)f3}η(X)η(Y ),(2.7)

S(X, ξ) = 2n(f1 − f3)η(X),(2.8)

Qξ = 2n(f1 − f3)ξ,(2.9)

r = 2n(2n+ 1)f1 + 6nf2 − 4nf3,(2.10)

for any vector fields X,Y on M2n+1(f1, f2, f3), where R, S and r are the curvature
tensor, Ricci tensor and scalar curvature of the space-form, respectively.
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Also, for a generalized Sasakian-space-form M3(f1, f2, f3) of dimension three
the Ricci operator Q and the curvature tensor R are given by [28]:

(2.11) QX = (
r

2
− f1 + f3)X − (

r

2
− 3f1 + 3f3)η(X)ξ

and

R(X,Y )Z = (
r

2
− 2f1 + f3){g(Y, Z)X − g(X,Z)Y }

−(3f1 − 3f3 +
r

2
){g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)X}(2.12)

respectively, for any vector fields X,Y, Z on M3(f1, f2, f3).

Definition 2.1. ([7]) A vector field V on a contact manifold M2n+1 is said to be
a contact vector field if it preserves the contact form η, that is,

(2.13) £V η = ρη

for some smooth function ρ on M2n+1. When ρ = 0 on M2n+1, the vector field V

is called a strict contact vector field.

Definition 2.2. ([15]) An infinitesimal automorphism V is a smooth vector field
such that Lie derivatives of all structure tensor along V vanishes, that is,

(2.14) £V g = £V ξ = £V φ = £V η = 0.

3. h-almost Ricci Solitons on Generalized Sasakian-space-forms

Let g be an h-almost Ricci soliton on a (2n+1)-dimensional (n > 1) generalized
Sasakian-space-form M2n+1(f1, f2, f3). Then we have from (1.2) that

(3.1) S(X,Y ) +
h

2
(£V g)(X,Y ) = λg(X,Y ).

Replacing ξ instead of X and Y in (3.1) we get

(3.2) hg(£V ξ, ξ) = 2n(f1 − f3)− λ.

Plugging Y by ξ in (3.1) and then using (2.8) and (2.13) gives

(3.3) h£V ξ = (hρ+ 4n(f1 − f3)− 2λ)ξ.

Observing (3.2) in (3.3) we have

(3.4) hρ = −2n(f1 − f3)− λ.
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Making use of (3.4) in (3.3) we get

(3.5) h£V ξ = {2n(f1 − f3)− λ}ξ.

On the other hand, from (2.3) we deduce that

(3.6) (£V dη)(X,Y ) = (£V g)(X,φY ) + g(X, (£V φ)Y ).

Multiplying both sides of (3.6) by h and then using (3.1) we infer

(3.7) h(£V dη)(X,Y ) = −2S(X,φY ) + 2λg(X,φY ) + hg(X, (£V φ)Y ).

Feeding (2.7) in (3.7) we get

(3.8) h(£V dη)(X,Y ) = {−2(2nf1 + 3f2 − f3) + 2λ}g(X,φY ) + hg(X, (£V φ)Y ).

Let us suppose that the potential vector field V of M2n+1 be a contact vector field.
Then, with the aid of (2.13) we have

(3.9) (£V dη)(X,Y ) =
1

2
{dρ(X)η(Y )− dρ(Y )η(X)}+ ρg(X,φY ).

This together with (3.8) provides

2h(£V φ)Y = 4{2nf1 + 3f2 − f3 − λ}φY + 2ρhφY

+ hη(Y )Dρ− h(Y ρ)ξ.(3.10)

Inserting ξ in place of Y we get

(3.11) 2h(£V φ)ξ = h{Dρ− (ξρ)ξ}.

With the help of φξ = 0 and (3.5) we obtain

(3.12) h(£V φ)ξ = h£V φξ − φ(h£V ξ) = 0.

Applying (3.12) in (3.11) we have

(3.13) Dρ = (ξρ)ξ.

Taking the inner product of (3.13) with X gives

(3.14) dρ(X) = (ξρ)η(X),

or equivalently,

(3.15) dρ = (ξρ)η.

Taking exterior derivative of (3.15) we get

d2ρ = d(ξρ) ∧ η + (ξρ)dη = 0,
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which implies

(3.16) d(ξρ) ∧ η + (ξρ)dη = 0.

Taking wedge product of (3.16) with η we gave

(3.17) (ξρ)η ∧ dη = 0,

from which it follows that ξρ = 0. Since η∧ (dη)n 6= 0, and by (3.15) one can obtain
dρ = 0 and hence ρ is constant.

Further, with the help of (2.13) and noting that £V and d commutes, we have

(3.18) £V dη = d£V η = (dρ) ∧ η + ρ(dη).

As a volume form, ω is closed and by thus the Cartan’s formula provides

(3.19) £V ω = (divV )ω

Next, taking the Lie differentiation to volume form ω = η ∧ (dη)n and then using
(3.18) and (3.19) we obtain

(3.20) divV = (n+ 1)ρ.

Integrating (3.20) over M2n+1 and then applying Divergence theorem, we infer

(3.21) ρ = 0,

(and so divV = 0). Thus, we obtain from (3.4) that

(3.22) λ = 2n(f1 − f3).

Theorem 3.1. Let M2n+1(f1, f2, f3) be a (2n + 1)-dimensional generalized
Sasakian-space-form with the potential vector field V as a contact vector field. If g
is h-almost Ricci soliton on M2n+1(f1, f2, f3), then the soliton is shrinking, steady
or expanding accordingly as f1 − f3 is positive, zero or negative.

The trace of (3.1) and with the fact that
∑3

i=1(£V g)(ei, ei) = 2divV and (3.20) we

deduce

(3.23) r = (2n+ 1)λ.

Now it is easy to check from (2.10), (3.22) and (3.23) that

(3.24) 3f2 + (2n− 1)f3 = 0.

By virtue of (3.24) and (2.7) we have

(3.25) S(X,Y ) = 2n(f1 − f3)g(X,Y ).
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That is, M2n+1(f1, f2, f3) is Einstein with Einstein constant 2n(f1−f3). Contract-
ing (3.25) we obtain

r = 2n(2n+ 1)(f1 − f3).

Therefore, the scalar curvature r is constant.
Next, with the help of (3.22) and (3.25), from (3.1) we get £V g = 0, which implies
that V is Killing. Since ρ is constant, it follows from (3.10) that

(3.26) h(£V φ)Y = {2nf1 + 3f2 − f3 − λ}φY.

We employ (3.22) and (3.24) in the above equation to achieve £V φ = 0 as h is
positive. Further, by taking account of (3.22) in (3.5), we have £V ξ = 0. Finally, we
substitute (3.21) in (2.13) to deduce £V η = 0. Thus, Lie derivatives of all structure
tensor along V vanishes and from (2.14), the flow vector field V is an infinitesimal
automorphism of the almost contact metric structure of M2n+1(f1, f2, f3). Hence,
we summarize the above in the form of a theorem which is as follows:

Theorem 3.2. Let M2n+1(f1, f2, f3) be a (2n + 1)-dimensional (n > 1) gen-
eralized Sasakian-space-form with the potential vector field V as a contact vector
field. If g is h-almost Ricci soliton on M2n+1(f1, f2, f3), then the scalar curva-
ture of M2n+1(f1, f2, f3) is constant and the flow vector field V is Killing. More-
over, V is an infinitesimal automorphism of the almost contact metric structure of
M2n+1(f1, f2, f3).

Remark 3.3. In [14], De and Sarkar studied projective curvature tensor on a
generalized Sasakian-space-forms and proved that a (2n + 1)-dimensional (n > 1)
generalized Sasakian-space-form is projectively flat if and only if 3f2+(2n−1)f3 = 0.
So by virtue of (3.24) it is evident that a (2n+ 1)-dimensional (n > 1) generalized
Sasakian-space-form M2n+1(f1, f2, f3) admits an h-almost Ricci soliton is projec-
tively flat.

Now, at this junction, we recall the following theorem due to Kim [27]:

Theorem 3.4. Let M2n+1 be a (2n + 1)-dimensional generalized Sasakian-space-
form. Then we have following:
(i) If n > 1, then M2n+1 is conformally flat if and only if f2 = 0.
(ii) If M2n+1 is conformally flat and ξ is a Killing vector field, then M2n+1 is lo-
cally symmetric and has constant φ-sectional curvature.

Also, it is known that projectively flat and conformally flat conditions for a gen-

eralized Sasakian-space-form of dimension greater than three are equivalent. By
taking account of this fact along with previous discussion, we are able to conclude
the following:
Theorem 3.5. Let M2n+1(f1, f2, f3) be a generalized Sasakian-space-form of di-
mension greater than 3. If (g, V ) is an h-almost Ricci soliton on M2n+1(f1, f2, f3)
with the potential vector field V as a contact vector field, then M2n+1(f1, f2, f3)
is conformally flat. In addition, if the characteristic vector field ξ of M2n+1 is a
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Killing vector field, then M2n+1(f1, f2, f3) is locally symmetric and has constant
φ-sectional curvature.

4.h-almost Gradient Ricci Solitons on Three-dimensional Quasi-Sasakian

Generalized Sasakian-space-forms

In [28], authors have studied the notion of quasi-Sasakian generalized Sasakian-
space-forms. This notion is an analogous version of the trans-Sasakian generalized
Sasakian-space-forms studied in [2]. An almost contact metric manifold M3 is a
three-dimensional quasi-Sasakian manifold if and only if [30]

(4.1) ∇Xξ = −βφX

for any vector field X on M3 and for a certain function β, such that ξβ = 0. Here, ∇
denotes the operator of the covariant differentiation with respect to the Levi-Civita
connection of M3. If β = constant, then the manifold reduces to a β−Sasakian
manifold and if in particular β = 1, the manifold becomes a Sasakian manifold. As
a consequence of (4.1), we have

(4.2) R(X,Y )ξ = −(Xβ)φY + (Y β)φX + β2{η(Y )X − η(X)Y }.

From (4.2) it follows that

(4.3) R(X, ξ)ξ = β2X and R(X,φX)ξ = dβ(φX)φX + dβ(X)X,

for any vector field X on M3, orthogonal to ξ. Also, from (2.4) we obtain

(4.4) R(X, ξ)ξ = (f1 − f3)X and R(X,φX)ξ = 0.

Therefore (4.3) and (4.4) give us β2 = f1 − f3 and β is constant. Also, in a three-
dimensional quasi-Sasakian generalized Sasakian-space-form β is non-zero, provided
f1 6= f3.

In this section, before entering into the main part we prove the following:

Lemma 4.1. On a three-dimensional quasi-Sasakian generalized Sasakian-space-
form M3(f1, f2, f3), we have

(∇XQ)ξ − (∇ξQ)X = β{φQX − 2(f1 − f3)φX}(4.5)

for any vector field X on M3(f1, f2, f3).

Proof. For a three-dimensional quasi-generalized generalized Sasakian-space-form
M3(f1, f2, f3) we have

(4.6) Qξ = 2(f1 − f3)ξ.

Taking covariant differentiation of (4.6) along an arbitrary vector field X on
M3(f1, f2, f3) and using (4.1), we get

(4.7) (∇XQ)ξ = β{QφX − 2(f1 − f3)φX}.
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Since ξ is Killing on a three-dimensional quasi-Sasakian generalized Sasakian-
space-form M3(f1, f2, f3), we have (£ξQ) = 0 on M3(f1, f2, f3). This follows that
£ξ(QX) = Q(£ξX). Now, taking into account (4.1) it follows that

(∇ξQ)X = β{QφX − φQX}(4.8)

for any vector field X on M3(f1, f2, f3). Subtraction of (4.8) from (4.7) gives (4.5).
This completes the proof.

Next, suppose that in a three-dimensional quasi-Sasakian generalized Sasakian-
space-formM3(f1, f2, f3), the metric g admits h-almost gradient Ricci soliton. Then
the soliton equation defined by (1.3) with the potential function u can be exhibited
as

(4.9) β∇XDu = −QX + λX

for any vector fieldX onM3; whereD is the gradient operator of g onM3(f1, f2, f3).
By straightforward computations, using the well known expression of the curvature
tensor:

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

and the repeated use of equation (4.9) gives

hR(X,Y )Du =
1

h
(Xh){QY − λY } −

1

h
(Y h){QX − λX}

− {(∇XQ)Y − (∇Y Q)X} − {(Xλ)Y − (Y λ)X}.(4.10)

Replacing ξ instead of X in (4.10) and making use of (2.12) and (4.5) we get

hR(ξ, Y )Du =
(λ− 2(f1 − f3))

h
(Y h)ξ +

1

h
(ξh)(QY − λY )

− β{2(f1 − f3)φY − φQY }+ (ξλ)Y − (Y λ)ξ.

for any vector field Y on M3(f1, f2, f3). Scalar product of the last equation with
an arbitrary vector field X and using (2.6), we obtain

h(f1 − f3){g(Y,Du)η(X)− (ξu)g(X,Y )}

=
(λ− 2(f1 − f3))

h
(Y h)η(Y ) +

1

h
(ξh){g(QX, Y )− λg(X,Y )}

− β{2(f1 − f3)g(φY,X)− g(φQY,X)}+ (ξλ)g(X,Y )− (Y λ)η(Y )(4.11)

for any vector fields X and Y on M3(f1, f2, f3). Next, substituting X by φX and
Y by φY in (4.11) and then using (2.1) provides

{(ξλ)−
λ

h
(ξh) + h(f1 − f3)(ξu)}{g(X,Y )− η(X)η(Y )}

+
1

h
(ξh)g(QφX, φY )− β{2(f1 − f3)g(X,φY )− g(QφY,X)} = 0(4.12)
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for all vector fields X,Y on M3(f1, f2, f3). Adding the preceding equation with
(4.11) yields

{2h(f1 − f3)(ξu) + 2(ξλ)−
2λ

h
(ξh)}g(X,Y ) + 4β(f1 − f3)g(φX, Y )

+ {
λ

h
(ξh)− (ξλ)− h(ξu)}η(X)η(Y )− βg(QφX + φQX, Y )

+ {
(λ− 2(f1 − f3))

h
(Y h)− h(f1 − f3)(Y u)− (Y λ)}η(X)

+
1

h
(ξh){g(QX, Y ) + g(QφX, φY )} = 0.(4.13)

Anti-symmetrizing the foregoing equation provides

{
(λ− 2(f1 − f3))

h
(Y h)− h(f1 − f3)(Y u)− (Y λ)}η(X)

− {
(λ− 2(f1 − f3))

h
(Xh)− h(f1 − f3)(Xu)− (Xλ)}η(Y )

+ 8β(f1 − f3)g(φX, Y )− 2βg(QφX + φQX, Y ) = 0(4.14)

for all vector fields X,Y on M3(f1, f2, f3). Moreover, substituting X by φX and Y

by φY in the last equation and using (2.9) and (2.1) gives

β{g((Qφ+ φQ)X,Y )− 4(f1 − f3)g(φX, Y )} = 0

for all vector fields X,Y on M3(f1, f2, f3). It follows from last equation that either
β = 0 or

(4.15) (Qφ+ φQ)X = 4(f1 − f3)φX.

for any vector field X on M3(f1, f2, f3). Let us assume that f1 6= f3. Then we
know that β is non zero. Hence, the equation (4.15) stands. Let {e, φe, ξ} be an
orthonormal φ-basis of M3(f1, f2, f3) such that Qe = σe. Thus, we have φQe =
σφe. Substituting e for X in (4.15) and using the foregoing equation, we obtain
Qφe = (4(f−f3)− σ)φe. Using φ-basis and (2.9) the scalar curvature is given by

r = g(Qξ, ξ) + g(Qe, e) + g(Qφe, φe)

= 2(f1 − f3) + σ + 4(f1 − f3)− σ

= 6(f1 − f3).

For the scalar curvature r = 6(f1 − f3), (2.12) gives us

(4.16) R(X,Y )Z = (f1 − f3){g(Y, Z)X − g(X,Z)Y }

for any vector fields X,Y, Z on M3(f1, f2, f3). Hence from (4.16) it follows that
M3(f1, f2, f3) is of constant curvature f1 − f3. Thus, we state the following:
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Theorem 4.2. Let M3(f1, f2, f3) be a three-dimensional quasi-Sasakian generalized
Sasakian-space-form with f1 6= f3. If g is an h-almost gradient Ricci soliton, then
M3(f1, f2, f3) is of constant curvature f1 − f3.

It is noted that the Weyl tensor vanishes on any three dimensional Riemannian
manifold. Therefore we may consider Cotton tensor which is another conformal
invariant of a three-dimensional Riemannian manifold. The Cotton tensor C(X,Y )
of type (1,1) is defined by: (see [6, 9, 41])

C(X,Y ) = (∇XQ)(Y )− (∇Y Q)(X)−
1

4
{dr(X)(Y )− dr(Y )(X)}

for any vector fields X and Y on M3. A three-dimensional Riemannian manifold is
said to be conformally flat if the Cotton tensor C vanishes.

Since the manifold under consideration is of constant curvature, that is, the
scalar curvature r is constant, therefore the Cotton tensor vanishes. From the
above discussions, we conclude the following:

Corollory 4.3. Let M3(f1, f2, f3) be a 3-dimensional quasi-Sasakian generalized
Sasakian-space-form with f1 6= f3. If g is an h-almost gradient Ricci soliton, then
the Cotton tensor C vanishes on M3(f1, f2, f3).
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