• Title/Summary/Keyword: Rhamnolipid B

Search Result 8, Processing Time 0.023 seconds

Suppression Effect of Gray Mold and Late Blight on Tomato Plants by Rhamnolipid B (Rhamnolipid B에 의한 토마토 잿빛곰팡이병과 역병의 억제효과)

  • Ahn, Ji-Ye;Park, Myung-Soo;Kim, Seul-Ki;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Choi, Jae-Eul;Kim, In-Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • A Pseudomonas strain SG3 producing biosurfactant and showing antifungal and insecticidal activities was isolated from agricultural soil severely contaminated with machine oils. The antagonistic bacterium inhibited mycelial growth of all of the tested fungal pathogens. The fermentation broth of SG3 also effectively suppressed the development of various plant diseases including rice blast, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose. An antifungal substance was isolated from the fermentation broth of SG3 by ethyl acetate partitioning, silica gel column chromatography and preparative HPLC under the guide of bioassay. The chemical structure of the antifungal substance was determined to be rhamnolipid B by mass and NMR spectral analyses. The antifungal biosurfactant showed a potent in vivo antifungal activity against gray mold and late blight on tomato plants. In addition, rhamnolipid B inhibited mycelial growth of B. cinerea causing tomato gray mold and zoospore germination and mycelial growth of P. infestans causing tomato late blight. Pseudomonas sp. SG3 producing rhamnolipid B could be used as a new biocontrol agent for the control of plant diseases occurring on tomato plants.

Studies on the Glycolipid Biosurfactant(2);The Rhamnolipid Production and Isolation by Pseudomonas sp. 13 (당 지질계 미생물 계면활성제에 관한 연구(제2보);Pseudomonas sp. 13에 의한 Rhamnolipid의 생성 및 분리)

  • Lee, Sun-Ju;Nam, Ki-Dae;Park, Heung-Jo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.157-163
    • /
    • 1992
  • A microorganism, isolated from soil and designated Pseudomonas sp13, produced two kinds of rhamnolipid in the medium containing glucose as carbon source. There were both rhamnolipid contain L-rhamnose and ${\beta}$-hydroxydecanoic acid. Coumpound A and B elucted chloroform-methanol mixed solution of silicic acid column chromatography and recrystallized from a mixture of ether and n-hexane. Studies on the structure of these products reveled that compound A is L-rhamnopyranosyl-${\beta}$-hydroxydecanoyl-${\beta}$-hydroxydecanoic acid and compound B is L-rhamnopyranosyl-L-rhamnopyranosyl-${\beta}$-hydroxydecanoyl-${\beta}$-hydroxydecanoic acid.

Isolation and characterization of Bacillus amyloliquefaciens TK3 inhibiting causative bacteria of atrophic rhinitis and fowl typhoid (돼지위축성비염과 가금티푸스 병원균을 저해하는 Bacillus amyloliquefaciens TK3의 분리 및 특성 조사)

  • Jung, Taeck-Kyung;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.177-180
    • /
    • 2015
  • For prevention of atrophic rhinitis of swine by Bordetella bronchiseptica and fowl typhoid by Salmonella gallinarum, bacterial strains showing antimicrobial activity against those pathogenic bacteria were isolated from various samples collected at animal farms. Among 372 bacterial isolates strain TK3 showed the highest antibacterial activity against both pathogens, and was identified as Bacillus amyloliquefaciens by 16S rRNA gene sequence analysis. B. amyloliquefaciens TK3 could inhibit growth of both pathogens by secretion of antibacterial compounds such as siderophore, rhamnolipid and antimicrobial peptide. Production radius of siderophore on Chrome azurol S agar plate by strain TK3 was 0.53 cm after 14 days of incubation, and concentration of siderophore in King's B medium was 1.06 mmol/ml. It also secreted 82.4 mg/L of rhamnolipid, and antimicrobial peptide that completely inhibited growth of both pathogens at concentration of $30{\mu}l/ml$ in LB medium.

Biosurfactant Production from Novel Air Isolate NITT6L: Screening, Characterization and Optimization of Media

  • Vanavil, B.;Perumalsamy, M.;Rao, A. Seshagiri
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1229-1243
    • /
    • 2013
  • In this paper, an air isolate (NITT6L) has been screened based on hemolytic activity, emulsification activity, drop collapsing test, and oil displacement test, as well as lipase activity. It was found that strain NITT6L was able to reduce the surface tension of the medium from 61.5 to 39.83 mN/m and could form stable emulsions with tested vegetable oils. Morphological, biochemical, 16S rRNA sequencing analyses, and fatty acid methyl ester analysis using gas chromatography confirmed that the air isolate under study was Pseudomonas aeruginosa. Characterization of the biosurfactant using agar double diffusion assay revealed that the biosurfactant was anionic in nature, and CTAB-methylene blue assay and Molisch test revealed its glycolipid nature. The FT-IR spectrum confirmed that the crude biosurfactant was a rhamnolipid. Using unoptimized medium containing sucrose as the carbon source, the isolate was found to produce 0.3 mg/ml of rhamnolipid in batch cultivation (shake flask) at $37^{\circ}C$ and pH 7. Optimization of the medium components was carried out using design of experiments and the yield of rhamnolipid has been enhanced to 4.6 mg/ml in 72 h of fermentation.

Gene Cloning and Partial Sequencing of Pseudomonas aeruginosa EMSI and KH7 rhamonolipid gene

  • 이근희;손명화;차미선;이상준
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.445-447
    • /
    • 2002
  • 본 연구는 환경친화적인 biosurfactant를 생산하는 Pseudomonas aeruginosa EMS1 and KH7를 rhamnolipid의 rhlR, rhlA, rhlB를 기초로한 primer를 이용하여 752bp, 802pb, 1280bp pcr을 수행하였으며 $pGEM^{(R)}$ / - T Easy Vector gene cloning 하여 Pseudomonas aeruginosa EMS1 and KH7의 Partial Sequencing를 서로 비교하였다. 이들 실험을 통하여 Pseudomonas aeruginosa의 유전적 구조 및 특성을 비교하여 유전적 조작을 위한 기초적인 자료가 되도록 한다.

  • PDF

Characterization of a Blend-Biosurfactant of Glycolipid and Lipopeptide Produced by Bacillus subtilis TU2 Isolated from Underground Oil-Extraction Wastewater

  • Cheng, Fangyu;Tang, Cheng;Yang, Huan;Yu, Huimin;Chen, Yu;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.390-396
    • /
    • 2013
  • Biosurfactants have versatile properties and potential industrial applications. A new producer, B. subtilis TU2, was isolated from the underground oil-extraction wastewater of Shengli Oilfield, China. Preliminary flask culture showed that the titer of biosurfactant obtained from the broth of TU2 was ~1.5 g/l at 48 h (718 mg/l after purification), with a reduced surface tension of 32.5 mN/m. The critical micelle concentration was measured as 50 mg/l and the surface tension maintained stability in solution with 50 g/l NaCl and 16 g/l $CaCl_2$ after 5 days of incubation at $70^{\circ}C$. FT-IR spectra exhibited the structure information of both glycolipid and lipopeptide. MALDI-TOF-MS analyses confirmed that the biosurfactant produced by B. subtilis TU2 was a blend of glycolipid and lipopeptide, including rhamnolipid, surfactin, and fengycin. The blended biosurfactant showed 86% of oil-washing efficiency and fine emulsification activity on crude oil, suggesting its potential application in enhanced oil recovery.

Synthesis of Biosurfactant-Based Silver Nanoparticles with Purified Rhamnolipids Isolated from Pseudomonas aeruginosa BS-161R

  • Kumar, C. Ganesh;Mamidyala, Suman Kumar;Das, Biswanath;Sridhar, B.;Devi, G. Sarala;Karuna, Mallampalli SriLakshmi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1061-1068
    • /
    • 2010
  • The biological synthesis of nanoparticles has gained considerable attention in view of their excellent biocompatibility and low toxicity. We isolated and purified rhamnolipids from Pseudomonas aeruginosa strain BS-161R, and these purified rhamnolipids were used to synthesize silver nanoparticles. The purified rhamnolipids were further characterized and the structure was elucidated based on one- and two-dimensional $^1H$ and $^{13}C$ NMR, FT-IR, and HR-MS spectral data. Purified rhamnolipids in a pseudoternary system of n-heptane and water system along with n-butanol as a cosurfactant were added to the aqueous solutions of silver nitrate and sodium borohydride to form reverse micelles. When these micelles were mixed, they resulted in the rapid formation of silver nanoparticles. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). The nanoparticles formed had a sharp adsorption peak at 410 nm, which is characteristic of surface plasmon resonance of the silver nanoparticles. The nanoparticles were monodispersed, with an average particle size of 15.1 nm (${\sigma}={\pm}5.82$ nm), and spherical in shape. The EDS analysis revealed the presence of elemental silver signal in the synthesized nanoparticles. The formed silver nanoparticles exhibited good antibiotic activity against both Grampositive and Gram-negative pathogens and Candida albicans, suggesting their broad-spectrum antimicrobial activity.