DOI QR코드

DOI QR Code

Isolation and characterization of Bacillus amyloliquefaciens TK3 inhibiting causative bacteria of atrophic rhinitis and fowl typhoid

돼지위축성비염과 가금티푸스 병원균을 저해하는 Bacillus amyloliquefaciens TK3의 분리 및 특성 조사

  • Jung, Taeck-Kyung (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • 정택경 (강원대학교 자연과학대학 생명과학과) ;
  • 송홍규 (강원대학교 자연과학대학 생명과학과)
  • Received : 2015.02.16
  • Accepted : 2015.05.04
  • Published : 2015.06.30

Abstract

For prevention of atrophic rhinitis of swine by Bordetella bronchiseptica and fowl typhoid by Salmonella gallinarum, bacterial strains showing antimicrobial activity against those pathogenic bacteria were isolated from various samples collected at animal farms. Among 372 bacterial isolates strain TK3 showed the highest antibacterial activity against both pathogens, and was identified as Bacillus amyloliquefaciens by 16S rRNA gene sequence analysis. B. amyloliquefaciens TK3 could inhibit growth of both pathogens by secretion of antibacterial compounds such as siderophore, rhamnolipid and antimicrobial peptide. Production radius of siderophore on Chrome azurol S agar plate by strain TK3 was 0.53 cm after 14 days of incubation, and concentration of siderophore in King's B medium was 1.06 mmol/ml. It also secreted 82.4 mg/L of rhamnolipid, and antimicrobial peptide that completely inhibited growth of both pathogens at concentration of $30{\mu}l/ml$ in LB medium.

Bordetella bronchiseptica에 의한 돼지위축성비염과 Salmonella gallinarum에 의한 가금티푸스 방지 방법을 찾기 위해서 두 세균병원체에 항균활성을 갖는 세균 균주를 축산농가의 여러 시료로부터 분리하였다. 분리균주 372개 중 TK3 균주가 두 병원체에 대해 가장 우수한 항균활성을 나타내었으며, 16S rRNA 염기서열 분석 결과 Bacillus amyloliquefaciens로 동정되었다. B. amyloliquefaciens TK3는 siderophore, rhamnolipid와 antimicrobial peptide 같은 항균물질을 분비하여 두 병원체의 생장을 저해할 수 있었다. TK3 균주는 Chrome azurol S 한천 평판에서 siderophore 생성반지름이 14일 배양 후 0.53 cm이었으며, King's B 배지에서 1.06 mmol/ml의 siderophore를 생성하였다. 또한 82.4 mg/L의 rhamnolipid를 분비하였으며, LB배지에 $30{\mu}l/ml$ 농도의 추출된 antimicrobial peptide 첨가 시 두 병원체의 생장을 완전히 저해하였다.

Keywords

References

  1. Al-Shehri, A. 2002. Medical treatment of chronic rhinitis. Internet J. Otorhinolaryngol. https://ispub.com/IJORL/2/1/8308#.
  2. Bahar, A. and Ren, D. 2013. Antimicrobial peptides. Pharmaceuticals 6, 1543-1575. https://doi.org/10.3390/ph6121543
  3. Candrasekaran, E. and Bemiller, J. 1980. Constituent analyses of glycosaminoglycans, pp. 89-96. In Whistler, R. (ed.) Methods in carbohydrate chemistry. Academic Press Inc. New York, USA.
  4. Fgaier, H. and Eberl, H. 2011. Antagonistic control of microbial pathogens under iron limitations by siderophore producing bacteria in a chemostat setup. J. Theor. Biol. 273, 103-114. https://doi.org/10.1016/j.jtbi.2010.12.034
  5. Geng, S., Jiao, X., Barrow, P., Pan, Z., and Chen, X. 2014. Virulence determinants of Salmonella Gallinarum biovar Pullorum identified by PCR signature-tagged mutagenesis and the spiC mutant as a candidate live attenuated vaccine. Vet. Microbiol. 168, 388-394. https://doi.org/10.1016/j.vetmic.2013.11.024
  6. Irie, Y., O'Toole, G., and Yul, M. 2005. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol. Lett. 250, 237-243. https://doi.org/10.1016/j.femsle.2005.07.012
  7. Izadpanah, A. and Gallo, R. 2005. Antimicrobial peptides. J. Am. Acad. Dermatol. 52, 381-390. https://doi.org/10.1016/j.jaad.2004.08.026
  8. Jawale, C., Chaudhari, A., and Lee, J. 2014. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid. Vaccine 32, 1093-1099. https://doi.org/10.1016/j.vaccine.2013.12.053
  9. Kim, K., Lee, Y., Kang, M., Han, S., and Oh, B. 2002. Comparison of resistance to fowl typhoid among crossbreed chickens artificially infected with Salmonella gallinarum. Kor. J. Poult. Sci. 29, 59-75.
  10. Lee, Y., Kim, K., Kwon, Y., Kang, M., Mo, I., Kim, J., and Tak, R. 2003. Prevalent characteristics of fowl typoid in Korea. J. Vet. Clin. 20, 155-158.
  11. Lee, K. and Song, H. 2008. Production of antifungal materials by Bacillus sp. which inhibit growth of Phytophthora infestans and Fusarium oxysporum. Kor. J. Microbiol. 44, 258-263.
  12. Lu, C. 2001. Studies on atrophic rhinitis: the prevalence in Korea, the development of PCR technique and the efficacy of atrophic rhinitis vaccine. Ph. D. thesis of Kangwon National University.
  13. Nagarajkumar, M., Bhaskaran, R., and Velazhahan. 2004. Involvement secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73-81. https://doi.org/10.1016/j.micres.2004.01.005
  14. Nakano, M., Marahiel, M., and Zuber, P. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170, 5622-5668.
  15. Nandre, R. and Lee, J. 2014. Comparative evaluation of safety and efficacy of a live Salmonella gallinarum vaccine candidate secreting an adjuvant protein with SG9R in chickens. Vet. Immunol. Immunopathol. 162, 51-58. https://doi.org/10.1016/j.vetimm.2014.08.014
  16. Okubo, K., Okamasa, A., Honma, G., and Komatsubara, M. 2015. Safety and efficacy of fluticasone furoate nasal spray in Japanese children 2 to <15 years of age with perennial allergic rhinitis: a multicentre, open-label trial. Allergol. Int. 64, 60-65. https://doi.org/10.1016/j.alit.2014.07.002
  17. Schwyn, B. and Neilands, J. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  18. Siegmund, I. and Wagner, F. 1991. New method for detecting rhamnolipids excreted by Pseudomonas species during growth on minimal agar. J. Biotechnol. Tech. 5, 265-268. https://doi.org/10.1007/BF02438660
  19. Waihenya, R., Mtambo, M., Nkwengulila, G., and Minga, U. 2002. Efficacy of crude extract of Aloe secundiflora against Salmonella gallinarum in experimentally infected free-range chickens in Tanzania. J. Ethnopharmacol. 79, 317-323. https://doi.org/10.1016/S0378-8741(01)00397-X
  20. Wang, Q., Fang, X., Bai, B., Liang, X., Shuler, P., Goddard, W., and Tang, Y. 2007. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol. Bioeng. 98, 842-853. https://doi.org/10.1002/bit.21462
  21. Wang, Y., Lu, Z., Bie, X., and Lv, F. 2010. Separation and extraction of antimicrobial lipopeptides produced by Bacillus amyloliquefaciens ES-2 with macroporous resin. Eur. Food Res. Technol. 231, 189-196. https://doi.org/10.1007/s00217-010-1271-1
  22. Wilson, M., Abergel, R., Raymond, K., Arceneaux, J., and Byers, B. 2006. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem. Biophy. Res. Comm. 348, 320-325. https://doi.org/10.1016/j.bbrc.2006.07.055
  23. Xu, D., Wang, Y., Sun, L., Liu, H., and Li, J. 2013. Inhibitory activity of a novel antibacterial peptide AMPNT-6 from Bacillus subtilis against Vibrio parahemolyticus in shrimp. Food Control 30, 58-61. https://doi.org/10.1016/j.foodcont.2012.07.025
  24. Zhao, Z., Wang, C., Xue, Y., Tang, X., Wu, B., Cheng, X., He, Q., and Chen, H. 2011. The occurrence of Bordetella bronchiseptica in pigs with clinical respiratory diseae. Vet. J. 188, 337-340. https://doi.org/10.1016/j.tvjl.2010.05.022

Cited by

  1. Inhibition of yeast Candida growth by protein antibiotic produced from Pseudomonas fluorescens BB2 vol.51, pp.4, 2015, https://doi.org/10.7845/kjm.2015.5055