• Title/Summary/Keyword: Response regulator

Search Result 385, Processing Time 0.029 seconds

Low-ripple coarse-fine digital low-dropout regulator without ringing in the transient state

  • Woo, Ki-Chan;Yang, Byung-Do
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.790-798
    • /
    • 2020
  • Herein, a low-ripple coarse-fine digital low-dropout regulator (D-LDO) without ringing in the transient state is proposed. Conventional D-LDO suffers from a ringing problem when settling the output voltage at a large load transition, which increases the settling time. The proposed D-LDO removes the ringing and reduces the settling time using an auxiliary power stage which adjusts its output current to a load current in the transient state. It also achieves a low output ripple voltage using a comparator with a complete comparison signal. The proposed D-LDO was fabricated using a 65-nm CMOS process with an area of 0.0056 μ㎡. The undershoot and overshoot were 47 mV and 23 mV, respectively, when the load current was changed from 10 mA to 100 mA within an edge time of 20 ns. The settling time decreased from 2.1 ㎲ to 130 ns and the ripple voltage was 3 mV with a quiescent current of 75 ㎂.

A 50-mA 1-nF Low-Voltage Low-Dropout Voltage Regulator for SoC Applications

  • Giustolisi, Gianluca;Palumbo, Gaetano;Spitale, Ester
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.520-529
    • /
    • 2010
  • In this paper, we present a low-voltage low-dropout voltage regulator (LDO) for a system-on-chip (SoC) application which, exploiting the multiplication of the Miller effect through the use of a current amplifier, is frequency compensated up to 1-nF capacitive load. The topology and the strategy adopted to design the LDO and the related compensation frequency network are described in detail. The LDO works with a supply voltage as low as 1.2 V and provides a maximum load current of 50 mA with a drop-out voltage of 200 mV: the total integrated compensation capacitance is about 40 pF. Measurement results as well as comparison with other SoC LDOs demonstrate the advantage of the proposed topology.

An analysis and control of double chopper DC-DC converter (이중 쵸퍼 DC-DC 컨버터의 해석과 제어)

  • Han, Sang-Wan;Sin, Dong-Hee;Hong, Seok-Gyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.576-581
    • /
    • 1997
  • DC-DC converter with chopper is seen to have problems, such as, loop instability and degradation of transient response, due to the interaction between input filter and switching regulator. In this paper, the switching regulator consisting of input filter and double chopper is analyzed, and the state space model at continuous current mode and the transfer function between duty ratio of switching pulse and output voltage are derived. The controller in this paper is designed as feedforward(P) and feedback(PI) control scheme to minimize the variation of output voltage, and computer simulation results are presented to show the performance of the proposed controller.

  • PDF

Putative response regulator two-component gene, CaSKN7, regulate differentiation and virulence in Candida albicans

  • Lee, Jung-Shin;Minyoung Lim;Yim, Hyung-Soon;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.50-50
    • /
    • 2003
  • We have identified and analysed a putative response regulator two-component gene (CaSKN7) from Candida albicans and its encoding protein (CaSkn7). CaSKN7 has an open reading frame of 1677bp. CaSKN7 encodes a 559 amino acid protein (CaSkn7) with an estimated molecular mass of 61.1 kDa. CaSKN7 is a homologue of a Saccharomyces cerevisiae SKN7 that is the regulator involved in the oxidative stress response. To study the role of CaSKN7, we constructed a CAI4-derived mutant strain carrying a homozygous deletion of the CaSKN7 gene. In the caskn7 disruptant cells, the formation of germ tube require shorter time than that in the congenic wild-type strain but the growth of mycelium delayed in liquid media. In contrast, the caskn7 disruptant cells attenuate the differentiation in solid media and the virulence in mouse model system. Expression level of hypha-specific and virulence genes - HYR1, ECE1, HWP1, and ALS1 - in the caskn7 disruptant cells increased as compared with that in the congenic wild-type strain in 10% serum YPD. Skn7 in 5. cerevisiae was found to bind the HSE element from the SSA promoter, Also, CaSkn7 contains heat shock factor DNA-binding domain and the promoters of these genes have HSE-like sties. Therefore these results show that CaSKN7 regulate the differentiation and virulence of C. albicans.

  • PDF

Design of Active Mass Damper to Improve Seismic Performance Using Capacity Spectrum Method (내진성능 향상을 위한 능력스펙트럼법에 의한 능동제어기 설계)

  • 김형섭;민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.259-266
    • /
    • 2003
  • This paper begins with the seismic performance evaluation of an existing building, which exhibits the need of additional damping to reduce its response. Required damping ratio is found by capacity spectrum method to satisfy a target response. It is expressed with the design parameter of active mass damper by adopting Linear Quadratic Regulator, Optimal gains are obtained and then weighting matrices are found. Finally the seismic performance by added active mass damper is demonstrated, which satisfies the target response.

  • PDF

FVF-Based Low-Dropout Voltage Regulator with Fast Charging/Discharging Paths for Fast Line and Load Regulation

  • Hinojo, Jose Maria;Lujan-Martinez, Clara;Torralba, Antonio;Ramirez-Angulo, Jaime
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.373-382
    • /
    • 2017
  • A new internally compensated low drop-out voltage regulator based on the cascoded flipped voltage follower is presented in this paper. Adaptive biasing current and fast charging/discharging paths have been added to rapidly charge and discharge the parasitic capacitance of the pass transistor gate, thus improving the transient response. The proposed regulator was designed with standard 65-nm CMOS technology. Measurements show load and line regulations of $433.80{\mu}V/mA$ and 5.61 mV/V, respectively. Furthermore, the output voltage spikes are kept under 76 mV for 0.1 mA to 100 mA load variations and 0.9 V to 1.2 V line variations with rise and fall times of $1{\mu}s$. The total current consumption is $17.88{\mu}V/mA$ (for a 0.9 V supply voltage).

Study of the effects of injector cleaning on the exhaust gases in a common rail diesel engine (커먼레일 디젤엔진의 인젝터 클리닝이 배기가스에 미치는 영향에 관한 연구)

  • Cho, Hong-Hyun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5980-5987
    • /
    • 2014
  • As a response to exhaust gas regulations, the electronic control system was applied to the diesel engine. The injected fuel mass and injection timing are accurately controlled using it, and the fuel efficiency and the engine output are significantly increased. In addition, the noise and the vibration of vehicles are decreased. To maintain the optimal performance of an electronic control diesel engine, it is important to control the fuel injection pressure accurately using the fuel pressure regulator. When the fuel pressure regulator is not worked normally, the failure phenomena (starting failure, staring delay, accelerated failure, engine mismatch et al.) occurred because the fuel pressure is not stabilized and controlled accurately. In this study, the effects on a fuel pressure, return fuel mass flow, and engine rotating speed according to the control rate of fuel pressure regulator were investigated to analyze the performance variation under the failure conditions of a fuel pressure regulator. As a result, when the control rate of a fuel pressure regulator decreased by 4%~6% compared to that of the standard condition, the variation of engine rotating speed and return fuel flow were increased greatly, and the abnormal condition occurred. In addition, it is possible to diagnose the failure of a fuel pressure regulator by monitoring these conditions.

Semi-active control of seismically excited structures with variable orifice damper using block pulse functions

  • Younespour, Amir;Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1111-1123
    • /
    • 2016
  • The present study aims at proposing an analytical method for semi-active structural control by using block pulse functions. The performance of the resulting controlled system and the requirements of the control devices are highly dependent on the control algorithm employed. In control problems, it is important to devise an accurate analytical method with less computational expenses. Block pulse functions (BPFs) set proved to be the most fundamental and it enjoyed immense popularity in different applications in the area of numerical analysis in systems science and control. This work focused on the application of BPFs in the control algorithm concerning decrease the computational expenses. Variable orifice dampers (VODs) are one of the common semi-active devices that can be used to control the response of civil Structures during seismic loads. To prove the efficiency of the proposed method, numerical simulations for a 10-story shear building frame equipped with VODs are presented. The controlled response of the frame was compared with results obtained by controlling the frame by the classical clipped-optimal control method based on linear quadratic regulator theory. The simulation results of this investigation indicated the proposed method had an acceptable accuracy with minor computational expenses and it can be advantageous in reducing seismic responses.