• Title/Summary/Keyword: Response Surface Designs

Search Result 124, Processing Time 0.024 seconds

Robust second-order rotatable designs invariably applicable for some lifetime distributions

  • Kim, Jinseog;Das, Rabindra Nath;Singh, Poonam;Lee, Youngjo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.595-610
    • /
    • 2021
  • Recently a few articles have derived robust first-order rotatable and D-optimal designs for the lifetime response having distributions gamma, lognormal, Weibull, exponential assuming errors that are correlated with different correlation structures such as autocorrelated, intra-class, inter-class, tri-diagonal, compound symmetry. Practically, a first-order model is an adequate approximation to the true surface in a small region of the explanatory variables. A second-order model is always appropriate for an unknown region, or if there is any curvature in the system. The current article aims to extend the ideas of these articles for second-order models. Invariant (free of the above four distributions) robust (free of correlation parameter values) second-order rotatable designs have been derived for the intra-class and inter-class correlated error structures. Second-order rotatability conditions have been derived herein assuming the response follows non-normal distribution (any one of the above four distributions) and errors have a general correlated error structure. These conditions are further simplified under intra-class and inter-class correlated error structures, and second-order rotatable designs are developed under these two structures for the response having anyone of the above four distributions. It is derived herein that robust second-order rotatable designs depend on the respective error variance covariance structure but they are independent of the correlation parameter values, as well as the considered four response lifetime distributions.

Slope Rotatability of Second Order Response Surface Regression Models with Correlated Errors

  • Jung, Hyang-Sook;Park, Sung-Hyun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.95-100
    • /
    • 2005
  • In this paper a class of multifactor designs for estimating the slope of second order response surface regression models with correlated errors is considered. General conditions for second order slope rotatability over all directions and also with respect to the maximum directional variance in case of k=2 have been derived assuming errors have a general correlated error structure. And we consider the measures for evaluating slope rotatability with correlated errors similar to in case of uncorrelated error structures.

  • PDF

Augmented D-Optimal Design for Effective Response Surface Modeling and Optimization

  • Kim, Min-Soo;Hong, Kyung-Jin;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.203-210
    • /
    • 2002
  • For effective response surface modeling during sequential approximate optimization (SAO), the normalized and the augmented D-optimality criteria are presented. The normalized D-optimality criterion uses the normalized Fisher information matrix by its diagonal terms in order to obtain a balance among the linear-order and higher-order terms. Then, it is augmented to directly include other experimental designs or the pre-sampled designs. This augmentation enables the trust region managed sequential approximate optimization to directly use the pre-sampled designs in the overlapped trust regions in constructing the new response surface models. In order to show the effectiveness of the normalized and the augmented D-optimality criteria, following two comparisons are performed. First, the information surface of the normalized D-optimal design is compared with those of the original D-optimal design. Second, a trust-region managed sequential approximate optimizer having three D-optimal designs is developed and three design problems are solved. These comparisons show that the normalized D-optimal design gives more rotatable designs than the original D-optimal design, and the augmented D-optimal design can reduce the number of analyses by 30% - 40% than the original D-optimal design.

A Graphical Method for Evaluating the Effect of Blocking in Response surface Designs Using Cuboidal Regions

  • Sang-Hyun Park;Dae-Heung Jang
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.607-621
    • /
    • 1998
  • When fitting a response surface model, the least squares estimates of the model's parameters and the prediction variance will generally depend on how the response surface design is blocked. That is, the choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of the prediction variance even if the experimental runs are the same. Therefore, care should be exercised in the selection of blocks. In this paper, we prognose a graphical method for evaluating the effect of blocking in a response surface designs using cuboidal regions in the presence of a fixed block effect. This graphical method can be used to investigate how the blocking has influence on the prediction variance throughout the entire experimental region of interest when this region is cuboidal, and compare the block effect in the cases of the orthogonal and non-orthogonalblockdesigns, resfectively.

  • PDF

Exact $D_S-efficient$ Designs for Quadratic Response Surface Model

  • Lim, Yong B.
    • Journal of the Korean Statistical Society
    • /
    • v.20 no.2
    • /
    • pp.156-161
    • /
    • 1991
  • Exact $D_{s}$-efficient designs for the precise estimation of all the coefficients of the quadratic terms are studied in a quadratic response surface model. Efficient exact designs are constructed for 2 q 5 w.r.t. $D_{s}$-optimaity criterion based on Pesotchinsky's(1975) and approximate $D_{s}$-optimal design given in Lim & Studden(1988) . Moreover, they seem to have reasonably good D-efficiencies. Similar idea could apply to q$\geq$6 cases.

  • PDF

Designs for Improving Mean Response

  • Park, Joong-Yang;Suh, Euy-Hoon;Ahn, Sung-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.102-112
    • /
    • 1995
  • Estimation of each of mean response, difference between mean responses and derivatives of the response function is a possible objective of a response surface design. These objectives are to be achieved simultaneously when an experiment is designed to improve mean response. For the situations where departure from the assumed model is suspected, first and second order designs for improving mean response are obtained by combining minimum bias designs for the individual design objectives. D- and A-optimalities are used for selecting specific second order designs. The results are applied to central composite designs.

  • PDF

Multi-Optimal Designs for Second-Order Response Surface Models

  • Park, You-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.195-208
    • /
    • 2009
  • A conventional single design optimality criterion has been used to select an efficient experimental design. But, since an experimental design is constructed with respect to an optimality criterion pre specified by investigators, an experimental design obtained from one optimality criterion which is superior to other designs may perform poorly when the design is evaluated by another optimality criterion. In other words, none of these is entirely satisfactory and even there is no guarantee that a design which is constructed from using a certain design optimality criterion is also optimal to the other design optimality criteria. Thus, it is necessary to develop certain special types of experimental designs that satisfy multiple design optimality criteria simultaneously because these multi-optimal designs (MODs) reflect the needs of the experimenters more adequately. In this article, we present a heuristic approach to construct second-order response surface designs which are more flexible and potentially very useful than the designs generated from a single design optimality criterion in many real experimental situations when several competing design optimality criteria are of interest. In this paper, over cuboidal design region for $3\;{\leq}\;k\;{\leq}\;5$ variables, we construct multi-optimal designs (MODs) that might moderately satisfy two famous alphabetic design optimality criteria, G- and IV-optimality criteria using a GA which considers a certain amount of randomness. The minimum, average and maximum scaled prediction variances for the generated response surface designs are provided. Based on the average and maximum scaled prediction variances for k = 3, 4 and 5 design variables, the MODs from a genetic algorithm (GA) have better statistical property than does the theoretically optimal designs and the MODs are more flexible and useful than single-criterion optimal designs.

The Study for Construction of the Improved Optimization Algorithm by the Response Surface Method (반응표면법의 향상된 최적화 알고리즘 구성에 관한 연구)

  • Park, J.S.;Lee, D.J.;Im, J.B.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.3
    • /
    • pp.22-33
    • /
    • 2005
  • Response Surface Method (RSM) constructs approximate response surfaces using sample data from experiments or simulations and finds optimum levels of process variables within the fitted response surfaces of the interest region. It will be necessary to get the most suitable response surface for the accuracy of the optimization. The application of RSM plan experimental designs. The RSM is used in the sequential optimization process. The first goal of this study is to improve the plan of central composite designs of experiments with various locations of axial points. The second is to increase the optimal efficiency applying a modified method to update interest regions.

  • PDF

Optimizing Food Processing through a New Approach to Response Surface Methodology

  • Sungsue Rheem
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.374-381
    • /
    • 2023
  • In a previous study, 'response surface methodology (RSM) using a fullest balanced model' was proposed to improve the optimization of food processing when a standard second-order model has a significant lack of fit. However, that methodology can be used when each factor of the experimental design has five levels. In response surface experiments for optimization, not only five-level designs, but also three-level designs are used. Therefore, the present study aimed to improve the optimization of food processing when the experimental factors have three levels through a new approach to RSM. This approach employs three-step modeling based on a second-order model, a balanced higher-order model, and a balanced highest-order model. The dataset from the experimental data in a three-level, two-factor central composite design in a previous research was used to illustrate three-step modeling and the subsequent optimization. The proposed approach to RSM predicted improved results of optimization, which are different from the predicted optimization results in the previous research.

Slope-Rotatability in Axial Directions for Second Order Response Surface Designs

  • Jang Dae-Heung
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.253-264
    • /
    • 2005
  • Hader and Park(l978) suggested the concept of slope-rotatability in axial directions for second order response surface designs. In this paper, the moment conditions for slope-rotatability in axial directions are shown and the measures for evaluating slope-rotatability in axial directions are proposed.