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Slope—Rotatability in Axial Directions for Second Order
Response Surface Designs

Dae-Heung Jangl

Abstract

Hader and Park(1978) suggested the concept of slope-rotatability in axial directions
for second order response surface designs. In this paper, the moment conditions for
slope-rotatability in axial directions are shown and the measures for evaluating
slope-rotatability in axial directions are proposed.

Keywords : rotatability, slope-rotatability in axial directions, slope-rotatability over all
directions, slope variance measure.

1. Introduction

There are a number of desirable properties for response surface experimental designs to
have. Among these properties, an interesting and important property is that of rotatability.
Since the concept of rotatability for response surface designs was first introduced by Box and
Hunter(1957), it has become an important criterion. A design is said to be rotatable if the
variance of the estimated response is constant at points equidistant from the design origin.

Good estimation of the derivatives of the response may be as important as the estimation of
the mean response. Thus, Hader and Park(1978) introduced the concept of slope-rotatability in
axial directions. Park(1987) suggested the concept of slope-rotatability over all directions.
Slope-rotatability in axial directions require that the variance of the estimated slope in every
axial direction be constant at points equidistant from the design origin. Similarly,
slope-rotatability over all directions require that the variance of the estimated slope averaged
over all directions be constant at points equidistant from the design origin. Park and
Kim(1992) proposed a measure of slope-rotatability in axial directions for second order
response surface designs and Jang and Park(1993) suggested a graphical method for
evaluating slope-rotatability over all directions in response surface designs. Draper and
Ying(1994) showed another measure of slope-rotatability over all directions. Ying, Pukelsheim
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and Draper(1995a, b) studied the conditions for slope rotatability over all directions. Kim, Um
and Khuri(1996) suggested quantile plots of average slope variance for response surface
designs. Jang(2002) proposed a graphical method for evaluating slope-rotatability in axial
directions for second order response surface designs.

The purpose of this paper is to investigate the conditions and moment structures for
slope-rotatability in axial directions in second order response surface designs and to suggest
the measures for evaluating slope-rotatability in axial directions with respect to second order
response surface designs.

2. Relations of Rotatability and Slope—-Rotatability

It is assumed that the response relationship is adequately approximated by the second-order

polynomial model in % design variables, x = (x,,%x,,...,%,),
k P . &
2 x)=B,+ ’Elﬂixﬂ‘ ;lﬁﬁxi‘*‘ ;’fgz}x & js 2.1

which may be written in matrix notation as #7( x)= x, B, in which the 1xp vector
=1, %1, %0000 X X2, ee, %%, % %9, ..., 54_1%,) and B is the px1 column
vector of the corresponding coefficients. Here, p is the number of parameters in the model.
By the method of least squares, the fitted equation ¥ x)= x s b is to be used to estimate
7 %), where b=(X'X) !Xy and X is an Nxp model matrix which reflects the

experimental design, and y is the observation vector. ‘
Box and Hunter(1957) established the following necessary and sufficient condition for second
order rotatability.

1. All odd order moments are zeros.
2. [#4d] = 3 [jf] for i#j,

where [777] and [7#jj] are the pure and mixed fourth order moments, respectively.
Hader and Park(1978) proposed the following concept of slope-rotatability in axial directions,
an analogue of the Box-Hunter rotatability criterion.

Var(%—g)-) is a function of only 7= (x?+x{+...+x2) 2 (2.2)

where Var(ia%(c—_&)*) is the variance of the estimated slope with respect to x ;. 9 x) 3 xx
i 1
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can be as follows:

—f’—ayfcfxl —d;/b | 2.3)

where d; is the 1xp vector of which each component is the result of differentiating the
each term with respect to x; in equation (21). For example, when

k=3, d1’=<0,1,0,(),2x1,0,0,x 2,x3,0). Then,
Va2 8y = 4 Var(h) d ;= d [(X'X) T1d o*. (2.4)

The straightforward form of the variance of the first derivative of ¥( x) with respect to

x ; in second order designs is

>y &
Var 222y — var(p ) +4x2Varb )+ 3 x3Varb )+4x Cond b )
) J=1, ¥

k k k
+2 JDINE Cou(b ;, b ) +4x ; ,'=Z,,-¢,'x Cov(b ;b )+2 ,~<§,‘1¢;x x Cov(b 4, b ). (25)

=1, j¥1

Therefore, it can be seen that the necessary and sufficient conditions for slope-rotatability
in axial directions(SRIAD) in second order designs are

dv,=v,(;=12,...,h), (2.6)
Cii=Ci3=C4si=C4ua=00*FFlFijX1j1=1.2,...,k), 27

where v i Var(b ,',') v i Var(b ij) C,‘ i COU(b i b ﬁ),C ' COU(b i b ,'j),
C 5= Cov(b ;b ;),cyy=Cov(b,b)i#j*l#1). We can call this definition as
SRIAD(type I).

Park and Kim(1992) added the following condition as the necessary and sufficient conditions
for slope-rotatability in axial directions in second order designs with the equation (2.2),

Var(—ﬂ—l)— Var(—l(—l) — = Van LA Ry 28)

3xk

This definition contains both slope-rotatability and equality in axial directions. We can call
this definition as SRIAD(type I). This SRIAD(type I) have the stronger condition than
SRIAD(type 1I).
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Park(1987) has proved the following theorem, which gives general conditions for a design to
be slope-rotatable over all directions.

Theorem 2.1. For the second order model, the necessary and sufficient conditions for a
design to be slope-rotatable over all directions are as the following:

k
1. 2C02)(b i b ,',') + . 2 .Cov(bj, b ij) = 0 for all 1.
j= +i

=17

k
2. 2[Cov(b ;4 b )+ Cov(b ;, b )]+ , Zp*. Cov(b ;,b,)=0 for any (i,j) when i#j.
Ly

k
3. 4Var(b )+ ; Var(b ;) are equal for all i,
i JFi

where b; and b, are least squares estimators of the second order polynomial model.

Park(1987) has proved the following corollary.

Corollary 2.2. If the following moment conditions are satisfied, the design is slope-rotatable
over all directions.

1. All odd order moments are zeros.
2. [#] are equal for all 7.

3. [ ] are equal for all .

4. [1jj] are equal for all i+,

where [7i] are the pure second order moments.

We can have the following lemma which have relations with corollary 2.2.

Lemma 2.3. If the following moment conditions are satisfied, the design is slope-rotatable
in axial directions(type II).

1. All odd order moments are zeros.

2. [4]) are equal for all 7.

3. [#ii] are equal for all .

4. [#j7] are equal for all i+#j.

5, Ll _ Lol + CGe— 2Nl = (o= DIid)* | |
[ 447 [éid) + (B— D441 — F 4]
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(Proof) If the preceding moment condition 1 is satisfied, we can show from the precision
matrix MX’'X) 7! that the equation (2.7) satisfied. Here, N is the number of design points.

If the moment conditions 1 - 4 are satisfied, the form of X’X and (X'X) ~! are given by
Draper and Smith(1981, pp.392 - 393). It follows that

vii=R and Uijz_%,i#:]-

where R={ N(C+ (k—2)D)—(k—1)B?}/A,A=(C— D){ N(C+ (k—1)D)— kB?%},

2 5 4 & 2 .2 .
xiuyc= 2 xiuyDz 2 xiwxjwz:’:]'

1 u=1 u=1

From the moment condition 5, 4R=1/D. Hence, the equation (2.6) is satisfied.

L

Let us denote A ;=[d],A ;=[] A 45=1[¢7]. Victorbabu and Narasimham(1991)

showed that when A ;=4,, A;;=coly and A ,;;=A4, in Lemma 2.3, condition 5 changes

ijj

as A llcy=2—k(5—cy] +A4E5—cy)—4]=0. Therefore, we can know that

Lemma 2.3 is a generalization of Victorbabu and Narasimham(1991)’s result.
3. Conditions for Slope—Rotatability in Axial Directions

We provided the necessary and sufficient conditions for SRIAD(type II) in equations (2.6)
and (27). But, it would be much more convenient if we could find the necessary and
sufficient conditions for SRIAD(type II) based on the moment matrix rather than the precision
matrix. For simplicity, let us assume that all odd order moments are 0. Then, we can
provide the necessary and sufficient conditions for SRIAD(type 0O) in case of 2=2 and

k=3, respectively.
Case 1. k=2

If all odd order moments are 0, then equation (2.7) is satisfied. Then the moment matrix
becomes
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1 0 O /\11 Azz

0A; 0 0 O

v | 0 0 Az OO
NHXX)= 3,0 0 Aun A
Az 0 0 Apze Ao

000 0 0 Ay

OO0 O

Then, we can get

1 o2 — Agzzs 2
=N 2 2 2 o
A2222A11 + A1111A22 + Al122 — 2A11 A2 A 1120 — Ar111A222
1 A= 2
V2 =37 2 2 2 o
A2220AT1 + A1111A22 + Af1a2 — 211 02 A 1122 — A111 A 2022
Vo = —La2
BTN Az

Therefore, we can express equation (2.6) by moments as the following:

42 1122(/1211 -4 1111) =44 1122('1222 —4 2222) B.1)

=4 2222’]211 +4 1111’]222 + /]21122 — 24 11/1 22’i 1122~ A 1111/i 2222+

Example 3.1. Let us consider the design of Box and Draper(1987, Exercise 15.2). The
design points are (0, a), (0,—a), (b,¢), (b,—¢), (—b,c), (—b,—c). Here, a,b,c are all
positive and we have (0,0) 7, times. We can know that all odd order moments are zeros

and even moments

A.——4br o _ 2a’+2c¢h , __4b' . _ 2a’+2ch) ; _ 4blc?
11 6_}_"0’ 22 6+n0 » 4 1111 6+n0’ 2222 6+n0 » 4 1122 6+n0'

Thus, this design is a unbalanced design. From equation (3.1), we can obtain the following
two equations.

(nyt+48)a'—8a’c’+2(ny+2)c* 1
4nga'b? 166%c?%”’
n0+2 _ 1

2ngat  16b2c?

There are infinite solutions. For # ;= 1, one solution is a=1,5=0.9375,c=0.2177.
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Case 2. k=3

If all odd order moments are 0, then equation (2.7) is satisfied. Then the moment matrix
becomes

1 0 0 0 A1 A2 A3 O 0 0
0 A O O O 0 0 0 0 0
0 0 X0 O 0 0 0 0 0
0 0 0 X3 O 0 0 0 0 0
vy A 0 0 0 Aun Auz duss 0 0 0
NXX)=1 300 0 0 MimdomAoe O O O
Az 0 0 O Auss Aoosz Azzz O 0 0
0 0 0 0 O 0 0 Aup O 0
0O 0 0 0 O 0 0 0 Augzs O
0 0 0 0 O 0 0 0 0 Ay

Then, we can get

oy = 1 AgznAsssz+ 2A00A53A 0033 — AggmA3s — MassAds — Aoz o
n="5 P o
o = 1 AunAssss+2AnAssAng — A1 dds = Msasdi — Mg
2= r P (2}
_ 1 dundese + 25 0 i — Miudg = Ao i — Ay, o
Uss= P
Vg = == 1 o*
27N Az
T
BTN s
Vg = e
BTN Ao

where 0= A 11114 22204 3333+ 4 211/1 22233 + A 222/1 2112.3 + 4 233'1 21122 + 24 1A 24 11224 3333

+24 11/1 33’1 1133;t 2222 +24 ZZA 33A 2233’1 1111 +24 1122’] 1133/1 2233 A 1111’l 2222'1233 —A 1111’1 3333’1222

_ 2 2 _ 2 _ 2 _ —
A 2222/1 3333/1 11 A 1111’1 2233 A 2222’1 1133 A 3333/‘l 1122 24 ll’1 22/1 1133’1 2233 24 11'l 33/1 1122’1 2233

- 24 A 334 11224 1133
Therefore, we can express equation (2.6) by moments as the following:

Anp=Ann=Axp=¢, 32
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A 1111/1 2222 + 24 11A 22’1 1122 = A 1111’1222 =4 2222"211 - /121122

= A 11id 3333+ 24 1A 334 1133~ A 1A — A aaed®y — A%

= A 20224 3333+ 24 24 334 333 — A 2222/1233 —A 3333/1222 - /122233 = —zi% ,

Example 3.2. Let us consider two equiradial designs, icosahedral design and dodecahedral
design. Icosahedral design consists of twelve vertices (0, ta,+b), (£4,0,ta),(ta,tb,0)
plus 7y = 1 center points. This icosahedral design is a balanced design and all odd order

moments are zeros. From equation (3.2), we can obtain the following one equation.

(4 +n)(a®+b*)*— (12 +ny )a’h’ __1
4ny (a* — a’b* +b*)(a® +b* )’ 16a’b’

Hence, we can obtain @/6=0.233 or a/b=4.290 for icosahedral design with ny,=1.
Dodecahedral designs consists of twenty vertices (0, t1/c,*c) ,(xc,0,%1/¢),(21/c,xc,0)
,(£1,+1,%1) plus ng =1 center points. This dodecahedral design is also a balanced design

and all odd order moments are zeros. From equation (3.2), we can obtain the following one
equation.

(20+no)(c* +c*+5)—8(c+c1)* 1

4+ =120+ no)(c* +c7*+8)—12(c+cV)] 48

Hence, we can obtain ¢=0.416 or ¢=2.405 for dodecahedral design with ny=1.
4. The Measures for Evaluating Slope—Rotatability

We can suppose slope variance measure Q(D) as the measure for evaluating SRIAD(type

II) of balanced designs which satisfy moment condition 1-4 in Lemma 23, A,;=Aa,,

QD) =14 ,[(c(—3) 2= k(5~c )]+ A3[ k(5 —c o) —4]l. 4.1)

Q(D) is zero if and only if a design D(a balanced design which satisfy moment condition

1-4 in Lemma 23, A;=A4,, Az=cely, and A ;=44 is slope-rotatable in axial

directions(type ). The value of Q(D) becomes larger as design D deviates from a
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SRIAD(type II) design. Through the following three examples, we can know that Q(D) is a
useful tool for evaluating SRIAD(type II) with respect to balanced designs which satisfy
moment condition 1-4 in Lemma 23, A ;=A4,, Az=coly, and A ;=44

Example 4.1. Let us consider a rotatable central composite design(CCD) (% =3, a=8 /%)

with various # ,, the number of the central points. Table 4.1 shows the values of Q(D) in
cases of various #,. We can find that this CCD approaches to a SRIAD(type II) design as

the number of center points increases except # ;= 2.

Table 4.1: The values of Q(D) in cases of various #

7y 1 2 3 4 5 6 7 8 9 10
Q(D)| 1542 1543 1533 1515 1493 1467 1440 1411 1382 1352

Example 4.2. Let us consider CCD( k=3, ny=1) with various @. We can find that the

value of Q(D) is zero at @ = 2.4324, namely, CCD becomes a SRIAD(type I) design at a
= 2.4324.

Example 4.3. For comparing the conditions for rotatability and slope-rotatability, we can
select the CCD, icosahedral design, and dodecahedral design with %2 = 3 and the number of
center points, #,=1. Table 4.2 shows the conditions for rotatability and slope-rotatability

with respect to three designs.

Table 4.2: The conditions for rotatability and slope-rotatability

constant rotatability slope-rotatability slope-rotatability
design in axial direction over all direction
(type O)
CCDh o 1.682 2.432 arbitrary positive
icosahedral design alb 1618 0.233 or 4.290 arbitrary positive
dodecahedral design| ¢ 1.618 0.416 or 2.405 arbitrary positive

We cannot use Q(D) in case of unbalanced designs. And, Q(D) is single-valued ones
which describe the nearness to slope-rotatability of the design as a whole and do not give a
comprehensive picture of the behavior of the slope variances throughout a region. Thus, we

can suggest a graphical method. The quantiles of # Var (ng(;—L)can be obtained by
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randomly selecting a large number of points on the hypersphere of radius T centered at the
design origin. We denote pth quantile by Q,(p) Quantile plots of Q.(p) versus p can be

then obtained for selected values of r within the region. This quantile plots are used to give
a comprehensive picture of the behavior of the slope variance throughout a region and hence
of the quality of the slope of the predicted response obtained with a particular design. Such
plots are used to investigate and compare SRIAD(type I) of certain response surface designs.
Through the following example, we can know that quantile plot is a useful tool for evaluating
SRIAD(type II) with respect to balanced designs or unbalanced designs.

Example 4.4. Roquemore 311A and 311B designs(Roquemore(1976)) are unbalanced designs
and all odd order moments are zeros. Figure 4.1 shows quantile plots of Roquemore 311A and
311B designs with various radii. From these graphs, we can find that Roquemore 311A and
311B designs are not slope-rotatable in axial directions(type II) but that Roquemore 311B
design is better than Roquemore 311A design with respect to SRIAD(type II). Roguemore
311B design have the same shape of quantile plot with respect to 3 design variables, On the
other hand, in Roquemore 311A design, quantile plot with respect to design variable z3 is

different from quantile plots with respect to design variable z; and z,.

w < ]
L=] had
g x1,X2(311A) 2 x1.X2(311A}
e x3EHA) il I IR x3311AY
g @ e X1X2X3(3118) g ef | - X1.x2.x3(3118)
= o E <
€ : E :
3 N 3 %
[ I =1 [« -1
o o
o <
a ] <
< T T T T A &) & ¥ e T T - T T
0.0 0.2 04 = o8- " 08 1.0 00 oz 04 08 o8 10
P(T=03) p(r=0.8) '
s *- B
- XI2EA) - x12(311A)
S I - X3(3114) - S i B AR L X3(311A) - ;
2 e x1,%2,%3(3118) e g | L x1,x2.x3(3118)
E o | o E o : T
2T 3
g & N
w Ced et
= e S Tt T
- o T e
0.0 02 04 . 08 08 1.0 00 02 04 08 0.8 10
 p(r=1.0) ) S p(rE18) o

Figure 4.1. Quantile plots for roquemore 311A and 311B designs(r =0.3,0.6,1.0,1.5)
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5. Conclusion

We studied the conditions for slope-rotatability in axial directions and the measures for
evaluating slope-rotatability in axial directions. Q(D) and quantile plot can be used as the
tools for evaluating slope-rotatability in axial directions(type II) with respect to the given
response surface design. Conditions for slope-rotatability in axial directions(type II) in case of
k>4 based on moment matrix, will be the obvious extension of this study.
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