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ABSTRACT

Exact D.-efficient designs for the precise estimation of all the coefficients of the quadratic
terms are studied in a quadratic response surface model. Efficient exact designs are constructed
for 2€4<5 w.r.t. Ds-optimaity criterion based on Pesotchinsky’ s(1975) and approximate D;-
optimal design given in Lim & Studden(1988). Moreover, they seem to have reasonably
good D-efficiencies. Similar idea could apply to ¢>6 cases.

1. Introduction

Consider a quadratic response surface model of the form :

Y0 =pot £, Bt E, B+ 3 Pt € . (D

In this model, Y(x) is the response or dependent variable, x;’ s are the independent experimen-
tal variables, the B’s are parameters to be estimated using the data from the experiment and
€ is an experimental error term with the common variance o’. Suppose each independent experi-
mental variable is properly scaled, so that the experimental region becomes the g-cube

X={:xl <1, i=1, -, g

Often the purpose of the response surface analysis is to find the optimum operating conditions.
Also it is very important to determine the nature of the response contour system. Thus, we
put more emphasis on the precise estimation of all the coefficients of the quadratic terms.

For the quadratic polynomial regression on the hypercube Kiefer(1961a), Kono(1962) and
Farrell, et al(1967) give a rather complete description of the approximate D-optimal design and
further considerations of minimum number of points of support of the D-optimal design are inclu-
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ded in Pesotchinsky(1975). The approximate D,-optimal design for estimating all the coefficients
of the quadratic terms is described by Lim & Studden(1988). The main result of the paper
is the construction of efficient exact designs for 2<¢<5 w.r.t. D.-optimaity criterion based on
Pesotchinsky’ s minimal second-order symmetric sets and approximate D.-optimal design given
in Lim & Studden(1988). Moreover, they seem to have reasonably good D-efficiencies. Similar
idea could apply to ¢>6 cases.

2. Preliminaries

Let f(x) be a (g+1)(g+2)/2X1 vector of all the monomials of degree upto two and B be
a vector of regression coefficients. Then it is assumed that for each x=(x;, ***, %) in the g¢-
cube

EY()=f(x)B.
A design & is a probability measure on X. The information matrix is given by
M® = [ f)f ) Ean). 2

If the design is implementable and N uncorrelated observations are taken, then the covariance
matrix of the least square estimates(l.s.e.) B of B is given by

Var(®) =37 M(®. €

A design & is an approximate D-optimal design iff | M(&*) | =Max. | MO | .

In the case where interest is in only all the coefficients of quadratic terms in B, it is customary
to decompose f(x) into f(x)'=(fi(x)", :(x)), where fi(x)’=(1, %1 -, x,) and (x)' =7, -,
X’ Xz -, X-i%). The vector o(x) contains all the quadratic terms. Similarly the information
matrix is decomposed into

M”( ) MIZ( )
M<:>=( : : )

M:(E) MO

The covariance matrix of 1.s.e. of all the coefficients of quadratic terms in B is proportional
to the inverse of

Zs(é) =Mzz(§) _le(é)MII_I(é)MIZ(é) .

A design &* is an approximate D,-optimal design iff | =,(&*) | =Max, | =.(&) | . To find the
maximum of | (&) |, we use the result that
| M) |

| MO | @

IDACINIES

Using the invariance theorem(Kiefer(1961b)) and equivalence theorem(Karlin & Studden
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(1966) and Atwood(1969)), Lim & Studden(1988) have shown that there exist D.-optimal designs
which are symmetric w.r.t. permutations and sign changes of xs,i=, --*, ¢ and they must
be supported on E, where E={x: | x| =0 or 1 }. For symmetric designs supported on E,
we let

u= f x°E(dx) = f x*€(dx) and v= f xS E(dx) . (5)
It is then easy to show (see Kiefer(1961a)) that
[ 28| = ]_lé/fug—g‘:‘=v"“"‘” (=) (u+ (g—Do—qud). (6)

Simple algebra shows tht | X.(&) | is maximized at

. Cgt+q+5)(q—1) \/4F+49+9
u'= (F+q+2) D

—g+Du—(g+
and v"=(2q2 1 ;;u_z g+ (8)

For i=1, 2, -, ¢, let E: be the subset of E consisting of those( ?) -2 elements with

g—¢ components of x being equal to zeros. The following theorem characterizes those sets of
the form Ui, E,, which can support a symmetric approximate D,-optimal design.

Theorem 1(Lim & Studden(1988)) The set Ul., E,, supports a symmetric approximate D-
optimal design if and only if

* »*

U v
0<ng(g=D - 7=+ <n<qg—1, n=q. 9

The weights for a symmetric approximate D,-optimal design with ;=0 and 7»=¢—1 are listed
in Table 1 for 2<¢<5. For more details, refer to Lim & Studden(1988).

Table 1. Weights for a symmetric approximate D.-optimal design on E

D,-optimal design

e (ED .472
q=2 E(ED .3852
& (Ey) .176
& (Ey .417
q=3 & (En) .475
& (E,) .108
& (Ey) . 366
q=4 & (Ey .562
& (E,) .072
& (Es) .324
q=5 & (ED) .625

&*(Ey) .051
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3. Exact D,-efficient Designs

When the design is implementable, i.e. the weight of each design point is proportional to
1/N, we call such a design an exact design. An exact design & is called second order symmetric
if any moments upto quartic involving odd powers are zeros, for example, E®x]x., E¥ xixe,
E¥ i x2, etc. We will construct efficient symmetric exact designs based on approximate D.-optimal
design and Pesotchinsky’s minimal second order symmertic sets for the practical purpose.

The value of | =,(&) | gives an indication of the information per point for a design w.r.t.
D.-optimality criterion, so designs with different total numbers of design points can be compared.
The designs are compared by calculating Ds-efficiencies defined by

| Z( ) ‘ glg+ /2
Ds(&) = \_ | Z(c‘f 3] (10)

Composite designs (Box & Wilson(1951)) are often used for estimating quadratic response
surfaces. They are difficult to beat in practice. Pesotchinsky(1975) considered designs whose
supports were subsets of the supports for D-optimal designs and obtained DP, designs with
support on the minimal second-order symmetric sets and on the center point, which has better
D-efficiencies than best composite designs. Here we take the similar approach to Pesotchinsky
(1975). But we allow to replicate observations on some of the minimal second-order symmetric
sets to get better D.-efficiencies.

Define #(E;) by the number of design points assigned on E;.. When 2<¢<3, minimal second
order symmetric sets arve E, and E,-;, themselves. By fixing the number of replications on E,
and E,-;, and then, varying the number of trials at the center point, the best symmetric exact
designs take single replication at all the points on E, & E,-;, i.e.,

when ¢=2; n(E)=4, n(E)=4, n(E)=1
when ¢=3 n(Es) =8, n(E)=12, n(E)=2.

When ¢=4, weights for a symmetric approximate D.-optimal design are &*.(E.)=.366 and
&*.(E;)=.562 from Table 1. From Pesotchinsky(1975), minimal second order symmertic sets
are as follows -

on E:. 8 points with the defining relation xux:;=1
on E;: x=03 2X4 points with xpz:=—1
all 8 points for x,=0, x.=0, x:=0.

By adding all sixteen design points in E,, the relative weight of E, to E; increases to 24/32,
which is close to the optimal relative weight .366/.562. By allocating n(E,) =24, n(E;) =32
and then, varying the number of trials at the center point, the best D.-efficiency is attained
at n(E,) =4.

When ¢=5, weights for a symmetric approximate D.-optimal designs are &*(Es)=.324 and
& (E)=.625 from Table 1. From Pesotchinsky(1975), minimal second order symmetric sets
are as follows -

on E; ' 8 points with Xmat, = Xt~ xxa:= 1
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on E,: %=03  8points with xxas=1
%=0;  8points with xuxxas= 1
%=0;  8points with xxxs= —1

%=0: 8points with xxx;= —1
x=0;  8points with xux,~=—1.

By adding sixteen design points with the defining relation xxxx:=1 on Es, the relative weight
of Es to E, increases to 24/40, which is close to the optimal relative weight .324/.625. By
allocating #(Es) =24, n(E,)=40 and then, varying the number of trials at the center point,
the best D.-efficiency is attained at n(E,) =3.

Table 2. Design Comparison

No. of Factors Designs No. of Trials | Z.O | Di-eff. D-eff.
q=1 Best Composite 10 .233e-1 . 987 .974
q=3 Lim DL 22 .129¢e-2 .994 . 987

Best Composite 14 . 382e-3 . 882 .976
q=4 Lim DL 60 .504e-4 .999 .993
Pesotchinsky DP 42 .371e4 .970 . 967
Best Composite 24 . 760e-5 . 828 .936
q=5 Lim DL 67 . 153e-5 .999 .996
Pesotchinsky DP 50 .121e-5 .984 .978
Best Composite 42 .537e-7 .813 .899

The design efficiencies are listed in Table 2. When ¢=2, the design is the best composite
design. The best composite designs are included for the comparison purpose.

4. Concluding Remarks

Composite designs are often used in practice for estimating quadratic response surfaces. The
main advantage over other type of symmertic designs is that they need fewer design points.
The best composite designs for ¢>3 do not have design points at the center, i.e., adding a
center point to a composite design decreases the information per experimental point. But the
center point is quite important in the sense that it is usually expected to be near the best operating
condition. Moreover D;-efficiencies of best composite designs seem to be poor. Thus we suggest
to use exact D.-efficient symmetric designs if we can afford to take enough number of design
points. They seem to have reasonably good D-efficiency as well as a few replications at the
center point.
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