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Abstract

A conventional single design optimality criterion has been used to select an efficient experimental design.
But, since an experimental design is constructed with respect to an optimality criterion prespecified by inves-
tigators, an experimental design obtained from one optimality criterion which is superior to other designs may
perform poorly when the design is evaluated by another optimality criterion. In other words, none of these is
entirely satisfactory and even there is no guarantee that a design which is constructed from using a certain design
optimality criterion is also optimal to the other design optimality criteria. Thus, it is necessary to develop certain
special types of experimental designs that satisfy multiple design optimality criteria simultaneously because these
multi-optimal designs (MODs) reflect the needs of the experimenters more adequately. In this article, we present
a heuristic approach to construct second-order response surface designs which are more flexible and potentially
very useful than the designs generated from a single design optimality criterion in many real experimental sit-
uations when several competing design optimality criteria are of interest. In this paper, over cuboidal design
region for 3 < k < 5 variables, we construct multi-optimal designs (MODs) that might moderately satisfy two
famous alphabetic design optimality criteria, G- and IV-optimality criteria using a GA which considers a certain
amount of randomness. The minimum, average and maximum scaled prediction variances for the generated re-
sponse surface designs are provided. Based on the average and maximum scaled prediction variances for k = 3, 4
and 5 design variables, the MODs from a genetic algorithm (GA) have better statistical property than does the
theoretically optimal designs and the MODs are more flexible and useful than single-criterion optimal designs.

Keywords: Multi-optimal designs, G-efficient design, 1V-efficient design, genetic algorithms, cub-
oidal regions.

1. Introduction

Since the efficiency of the experiment is greatly affected by the values of the design factors selected
from the design region of interest, the selection of proper experimental design points is very important.
A certain design optimality criterion is often considered when deciding which response surface design
to implement. There have been considerable studies in the problem of selecting efficient experimental
designs and developing evaluation criteria for experimental designs. One of the most popular and
commonly used classes of experimental design for fitting a second-order response surface model is
the central composite designs (CCDs) which consist of factorial points, center points and axial points
{Box and Wilson, 1951). A family of efficient three-level designs based on balanced incomplete block
designs for fitting second-order response surfaces has been developed by Box and Behnken (1960),
so called as Box-Behnken Designs (BBDs). Usually, in order to evaluate the developed experimental
designs, certain optimality properties are used before running an experiment. In the next section, the
details of several design optimality criteria and optimal design generation methods are presented.

This research is supported by Chung-Ang University, 2008.

! Assistant Professor, Department of Business Administration, Chung-Ang University, Dongjack-Gu, Seoul 156-756, Ko-
rea. E-mail: eugenepark@cau.ac.kr



196 You-Jin Park

2. Optimal Design Theory and Optimal Design Generation Algorithms
2.1. Optimal design theory ‘ '

There are several researches on the optimality properties and comparison of constructed experimental
designs for second-order response surface models. Borkowski (1995a, 1995b, 1995c) theoretically
developed analytical forms of the prediction variance properties for CCDs and BBDs. Borkowski and
Valeroso (2001) addressed an overparameterization problem that usually happens when approximat-
ing the true response surface model and investigated robustness against many classes of misspecified
response surface models (See, Lucas, 1974, 1976; Myers et al., 1992 and Box and Draper, 1987).
Hartley (1959) considered the smallest composite designs (SCDs) for k = 3, 4, and 5 and Hoke
(1974) and Notz (1982) considered smaller designs consisting of a subset of the 3* fractional design.
See Myers and Montgomery (2002) for a more details on SCDs. Many researchers have studied var-
ious design evaluation criteria for the purpose of comparing designs and for constructing efficient
experimental designs. The commonly used design optimality criteria for these purposes are alpha-
betic optimality criteria such as D-, A-, G- and IV-optimality criteria. Most of the design optimality
criteria are based on the properties of the information matrix, X'X, where X is the expanded de-
sign matrix of an experimental design with associated response surface model on k design variables.
Among these, the most popular design optimality criterion for estimating coefficient parameters is
D-optimality criterion when errors in the response surface model are assumed to be iid. normally
distributed. D-optimal designs minimize the volume of the confidence ellipsoid of the parameters by
minimizing the generalized variance. Because the inverse of the moment matrix, M = n(X'X)",
(scaled dispersion matrix), contains variances and covariances of the regression coefficients, scaled
by n/c?, control of the moment matrix by design implies control of the variances and covariances
of regression coefficients (Kiefer, 1959, 1961; Wald, 1943). Thus, an upper bound for the prediction
variance for a proposed experimental design which called as the maximum prediction variance over
the design region is often used for evaluating experimental designs. So, two design optimality criteria
that are particularly useful when interest lies in good prediction for the second-order response surface
model are G-optimality and /V-optimality. The criterion which focuses on the maximum prediction
variance over the design region is called G-optimality and the G-efficiency is defined as

2.1

Ge = ?
11 max[v(x)]
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where v(x) is the scaled prediction variance (SPV) at the location of x™ and p is the number of es-
timated coefficient parameters. A design is said to be G-optimal if the maximum value of the scaled
prediction variance (v(x)) in Equation (2.1) is minimized. It can be shown that the maximum SPV
for a G-optimal design is p. As an alternative to the single-value criterion approach, the variance
dispersion graphs (VDGs) have been developed by Giovannitti-Jensen and Myers. VDGs show the
prediction-variance properties throughout the experimental design region of interest. As another al-
phabetic optimality criterion related to prediction variance, 7V-optimality has been developed. A
design is said to be TV-optimal (also called I- and Q-optimal in the literature) if it minimizes the
integrated SPV over the design region R. Specifically, the IV criterion is

IV=n f XX Xy x" ™ dx. 2.2
R

Here the design region is a cube or hypercube and » is the number of runs in the design. Because
the G and I'V-optimality criteria focus on optimizing functions of the prediction variance, they are a



Multi-Optimal Designs for Second-Order Response Surface Models 197

good choice of criterion for selecting a second-order response surface design. As another available
tool to create optimal designs is to use computer using a specific design optimality criterion, so the
created designs are called as computer-generated designs. IV-efficient designs can be constructed
using JMP (2004) software or SAS. The designs created in JMP are not truly /V-optimal but represent
the best design for this criterion found from among a number of candidate designs obtained with an
exchange algorithm using the default parameters. By using a larger number of candidate designs with
aricher set of candidate points, some improvement in performance is possible, which leads to designs
that do have the best average scaled prediction variance values. However, this richer set of search
options is considerably more computationally intensive. The size of the design was selected based on
the prediction variance results obtained for the standard designs. In addition to these, there are huge
amount of researches on optimal design theory (See, Atwood, 1969; Karlin and Studden, 1966; Myers
and Montgomery, 2002; Stigler, 1971).

2.2. Optimal design generation algorithms

Several useful design generation algorithms have been developed and applied to obtain efficient de-
signs reflecting good statistical properties. The most popular algorithms for constructing D-optimal
designs are the exchange-type algorithms that find efficient designs by sequentially adding and remov-
ing experimental points to maximize the size of the variance-covariance matrix. Since the exchange-
type algorithms are direct search methods, they usually only provide locally optimal solutions (Meyer
and Nachtsheim, 1995). For more details on these algorithms, see Fedorov (1972), Mitchell (1974)
and Wynn (1970). Cook and Nachtsheim (1980) compared algorithms for the computer generation
of exact D-optimal experimental designs and evaluated a procedure for rounding off approximate
designs as suggested by Kiefer (1959). Weich (1982) described a branch-and-bound algorithm for
finding global D-optimum designs and Haines (1987) applied simulated annealing algorithm to the
construction of exact D-, IV- and G-optimal designs for linear models. Montepiedra ef al. (1998),
Hamada et al.(2001), Borkowski (2003) and Heredia-Langner er al.(2003) applied genetic algorithms
(GAs) to the problem of finding the efficient designs for many different kinds of models. Currently,
computer-intensive optimization algorithms are utilized to construct efficient experimental designs
and evaluate the important properties of the designs and also several computer packages are available
that can generate optimal or near optimal designs for use in many industrial applications. However,
the general approach which uses a single design optimality criterion for constructing an experimen-
tal design has been criticized because it does not simultaneously satisfy the various statistical design
characteristics required by industrial practitioners. The design robust over the design optimality cri-
teria will be potentially very useful in many practical experimental situations. When an experimental
design is selected with respect to a single design optimality criterion, the design based on a prespeci-
fied optimality criterion could have inferior to other designs with respect to the other design optimality
criterion. Thus, it is important to construct a certain superior response surface design which has mod-
erately high efficiencies for different design optimality criteria of interest over a proposed response
surface model. However, it may not be easy to characterize and optimize several competing objectives
relevant in the design of an experiment simultaneously.

There have been many researches on taking more than one criterion into consideration and com-
bining more than one criterion in optimal design problems and various design optimality measures
have been developed and used to select optimal designs for this situation. One approach to the design
problem is to create a new objective function based on a weighted average of a several design criteria;
this has been termed either a compound or a weighted design problem {(Cook and Nachtsheim, 1982).
This approach is to weight each criterion and find the design that optimizes the weighted average of
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the criteria. An alternative approach is to optimize one primary design criterion, subject to constraints
for a specified minimum efficiency of other criteria. This is known as the constrained design problem.
This approach sets up a minimal quality of designs and then determines a design that is optimal with
respect to a criterion among the designs that achieve the minimal quality. Stigler (1971) formulated a
multipurpose optimality criterion for the standard univariate linear regression models, which is called
C-restricted D- and G-optimality. Liuter (1974, 1976) suggested an approach that the true model is
in a class of models specified in advance and then assigned a weight to each model and an adjustment
to the different orders of magnitude of the determinant of information matrix under various response
surface models. In this approach, D-optimality criterion is considered, and the design called multi-
purpose design which maximizes a combined weighted design optimality criterion is sought through
a proposed design generating algorithm. Most of these researches have been used in discriminating
between two or three competing models and finding efficient estimates of the coefficient parameters
for a given model. The minimal qualities required in most optimal design problems are about the
model discrimination that allows a check of whether or not the fitted model provides an adequate fit
to the true model or that allows simultaneously good fit of a class of models. Lee (1988) considered
a problem of combining optimality criteria using constrained optimization technique. Constraints can
be due to some optimality criteria so that the designs satisfying the constraints will have at least the
minimal quality that an investigator wishes to maintain. In this work, he provided multiple-objective
designs for the quadratic and cubic models using Lagrange’s multiplier techniques. Cook and Wong
(1994) considered the problem of finding a two-objective optimal design and showed that two standard
approach for constructing optimal designs to satisfy two objectives, that is, constrained and compound
optimal design, are essentially equivalent. They provided an example that the design optimality cri-
teria of interest are A- and D-optimality at the same time and plotted the efficiencies for the value
of A, where A is the weight assigned to each criterion. Clyde and Chaloner (1996) also showed that
the equivalence between compound optimal designs and constrained optimal designs and then applied
these approaches to Bayesian and nonlinear design problems with three or more design optimality cri-
teria. They formulated the constrained design problem as a weighted design problem that allows the
use of unconstrained optimization routines to find optimal design for the constrained optimal design
problem. Huang and Wong (1998) proposed a sequential approach for constructing multiple-objective
locally optimal designs for nonlinear models that satisfy multiple criteria simultaneously under the as-
sumption that the initial estimates of parameters are known. However, in most cases, it is known that
to generate even a compound optimal design requires quite a large amount of time if the conventional
optimal design generation algorithms. Consequently, we can conclude that it is much harder to find
multiple-objective optimal designs when there are more than two objectives. And, when compound
optimal design approach is used, because of scaling in the utility functions, choosing the appropriate
weights can be difficult work. Thus, we present a genetic algorithm (GA) approach which is known
as a simple and quick approach to attack this type of optimal design problems. Using a GA for solv-
ing difficult combinatorial optimization problems, we generate second-order response surface designs
that satisfy multi-optimal criteria simultaneously over a cuboidal region for 3 < k < 5 variables. In
next section, we provide a brief description of GAs and the operating characteristics as well as multi-
objective optimization methods. Before finding multi-optimal response surface designs, we first need
to specify a response surface model. In this research we focus on the second-order response surface
model on k variables given by:

k ko k k
y=8+ Z,Bixi + Z Z Bijxix; + Zﬂz’ix,2 +e, (2.3)
i=1 i=1

i=1 j=i+l
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where y is the measured response, B, is the intercept term, B3; are the coefficients of the first-order
terms, B; and §;; are the coefficients of the pure quadratic terms and the interaction terms and & is
error term with NID(0, o). This model is simple and very useful in many experimentation studies.

3. Multi-Objective Optimization Methods and Genetic Algorithms

Multi-objective optimization methods deal with searching optimal or nearly optimal solutions to prob-
lems having multiple objectives (see Evans, 1984). So the user is not satisfied by finding one optimal
solution with respect to a single optimality criterion. In a single criterion optimization problem the
main goal is to find the global optimal solution to a objective function, while, in a multi-criterion
optimization problem, there is more than one objective function, each of which may have a different
individual optimal solution. If there is a sufficient difference in the optimal solutions corresponding to
different objective functions, then we can say that the objective functions are conflicting to each other.
Multi-objective (or multi-criterion) optimization problems with such conflicting objective functions
may provide a set of optimal solutions, instead of one optimal or nearly optimal solution. We call
these optimal solutions as ‘Pareto-optimal solutions’ following the name of an economist Vilfredo
Pareto who is known for ‘Pareto optimality’. The concept of ‘Pareto optimality’ is that, generally, the
solutions to a multi-objective optimization problem are not a single value but instead a set of values
also called the ‘Pareto set’. If we illustrate the ‘Pareto optimal solutions’ with cost and time (which
are should be minimized in general) from an algorithm shown in Figure 1.

For example, in this problem we have to minimize both cost and time simultaneously. The point
D represents a solution to this problem, which has a minimal cost, but time is high. On the other hand,
the point r represents a solution with high cost but minimum time. Considering both objectives, no
solution is optimal. So in this case we cannot say that solution p is better than r and also there exist
many such solutions like ¢ also belong to the ‘Pareto optimal set’. All of the solutions, on the curve,
are known as ‘Pareto-optimal solutions’. From the Figure 1 it is clear that there exist solutions, which
does not belong to the ‘Pareto optimal set’, such as a solution like . If we compare ¢ with solution g,
is not better than ¢ with respect to any of the objectives, So we can say that ¢ is a ‘dominated solution’
or ‘inferior solution’. In the next part, a brief description of GAs and the operating characteristics of
GAs will be provided.

Generally, applying exhaustive search algorithm may be inefficient computationally in order to
find the optimum or near optimum for the large-scale combinatorial optimization problems within ac-
ceptable computation time. So, we should consider a certain efficient search algorithm rather than ex-
haustive search algorithm for these cases. When dealing with large-scale combinatorial optimization
problems, specialized procedures should be applied simply. The specialized procedures are usually
called heuristic procedures that do not require a mathematical formulation since heuristic methods as
a practical and quick method based on strategies are likely to (but not guaranteed to) lead to a so-
lution that is approximately optimal or near optimal. Several different kinds of heuristic approaches
have been developed for dealing with difficult combinatorial optimization problems. Many useful
heuristic algorithms based on the general principle of local improvement have been developed. One
-of the famous heuristic algorithms is genetic algorithms (GAs). GAs that occur on a computer were
motivated by an analogy of biological evolution and heredity: a population (a pool of individuals)
undergoes some transformation and during this process, the individuals strive for survival. Usually
through the artificial evolution operations, GAs iteratively seek to breed solutions that are optimal or
nearly optimal. When applying GAs, we have to define a fitness measure or an evaluation criterion in
order to determine whether a solution optimize the numerically predetermined fitness measure or not.
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Figure 1: Pareto optimal solutions

Once all individual solutions in the population have been evaluated, their evaluated values, called as
fitnesses, are used as the basis for selection of the next generation. Some of these selected individual
solutions are carried forward into the next generation population intact. Others are used as the basis
for generating new offspring individuals by applying artificial evolution operations (Forrest, 1993 and
Montepiedra et al., 1998). In this study, in order to select the required number of individual solu-
tions of the next generation, we use three main genetic operations: cloning, crossover (mating) and
mutation and we use real-value encoding scheme. For more details, see Park et al. (2005). However,
it should be noted that GAs also have a possibility of getting trapped at a local optimum, since the
considered problem in this study includes numerous locally optimal solutions. However, although
GAs may not guarantee the optimal solution, GAs can be used for solving this problem since it strikes
a balance between a direct search, leading to a systematic improvement of the criterion value and a
stochastic search of the space of possible solutions.

4. Construction of Multi-Optimal Designs over Cuboidal Region Using GA

In this section, we present a detailed description of how a GA can be applied to the problem of
finding the best experimental designs that have moderately high G- and IV-efficiency simultaneously
when the number of factors is 3 to 5. Based on these two optimality criteria, maximum and average
scaled prediction variances at the maximum shrinkage levels can be calculated and then be used to
compare several designs. The robustness of a design against the design optimality can be quantified
by calculating scaled prediction variances. For selecting the multi-optimal designs, we find non-
dominated solutions that draw an efficient frontier. As generating initial populations, we consider two
cases: (i) Random generation of initial populations; (ii) Random generation plus already developed
best designs such as Hoke designs or Mitchell and Bayne’s DETMAX designs or SCD or FCC. We
analyze the maximum and average scaled prediction variances for second-order designs generated
from the GA according to the number of design factors considered. For cuboidal regions, it is known
that the design from Mitchell-Bayne’s DETMAX (1978) algorithm is the most efficient in maximum
scaled prediction variance point of view for k = 4 and 24-run case and the Hoke designs (1974) are
the most efficient in maximum scaled prediction variance point of view for k = 3 with 14-run case -
and k = 5 with 26-run cases, respectively. Table 1 summarizes the minimum, average and maximum
of the scaled prediction variances for several designs and GA designs with different experimental runs
for k = 3 design variable case, where n and n, represent the total number of experimental runs and the
number of center points, respectively. In each table, we represent the newly generated experimental
designs from GA by a sign. For example, the experimental design ‘GA3F13R_01" for k = 3 and
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Table 1: Scaled prediction variances of current designs and GA-Designs for k = 3

Scaled Prediction Variance at Shrinkage Level = 1

k " e Design Type Minimum Average Maximum
3 SCD 8.175 22.955 90.737
3 13 0 GA3FI3R_01 4.690 7.452 15.364
1 GAZ3FI3R.02 3.572 7.255 16.545
0 Hoke 5.250 8.773 12.042
3 14 0 IV-Efficient 5.531 9.875 24.531
0 GA3F14R_01 4.346 6.179 11.200
3 15 5 AP 5,518 97.092 1049.440
) 1 GA3F15R_01 3.789 6.417 11.958
3 FCC 7.798 9.348 13.510
3 17 1 GA3F1I7R_01 4.562 7.022 13.074
0 GA3FITR_02 3.610 6.168 13.519
3 18 1 MB-B 6.221 8.747 15.646
0 GA3ZF18R_01 4.445 6.791 12.514
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Figure 2: Pareto optimal solutions fork = 3

n = 13 stands for the first ‘Pareto-optimal solution’ (or Non-dominated solution) with 13 runs for 3
design variable case.

For k = 3 design variables, we consider five different cases, that is, n = 13,14,15,17 and 18.
The Pareto optimal solutions marked by ‘@’ are plotted in Figure 2 and the minimum, average and
maximum scaled prediction variance of the designs from a GA and theoretically optimal designs are
shown in Table 1. As shown in Table 1, the newly generated experimental designs (‘GA3F13R._01
and ‘GA3F13R_02) are very efficient with respect to the G- and /V-optimality criteria for n = 13.
For n = 14, the experimental design from GA, ‘GA3F14R_01" without center points is superior to
Hoke design that is known as both G- and I'V-efficient for a second-order response surface model. For
n = 15, the experimental design from GA, ‘GA3F15R_01" is superior to AP design that is known as
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both G-efficient for a second-order response surface model. For n = 17, the experimental design from
GA, ‘GA3F17R_01’ is superior to Face-centered cube (FCC) design that is known as both G-efficient
for a second-order response surface model. The newly generated experimental design for n = 17,
that is, ‘GA3F17R_02’ is superior to the FCC design with respect to the /V-optimality criterion.
For n = 18, the experimental design from GA, ‘GA3F18R_01’ is superior to MB-B design that is
known as both G-efficient for a second-order response surface model. The ‘GA3F18R_01" design
also has better efficiency than the MB-B with respect to the IV-optimality criterion. So, there are
small improvements in both average and maximum scaled prediction variances of the response for
all cases. For example, the average and maximum scaled prediction variances of Hoke design are
8.773 and 12.042, whereas those of GA design, ‘GA3F14R_01’, are 6.179 and 11.200. We could also
see that the minimum scaled prediction variances of the designs from a GA forn = 24 and n = 41
are not much different from those of famous optimal designs such as MB-D and AP. Because the
minimum scaled prediction variances of the constructed designs are not a matter of concern in the
optimal design problem, only the average and maximum prediction variances of experimental designs
should be considered. Among the multi-optimal designs, we present only some experimental designs
in the Appendix.

For k = 4 design variables, we consider five different cases, that is, n = 19, 21, 24, 29 and 41.
The Pareto optimal solutions marked by ‘@ are plotted in Figure 3 and the minimum, average and
maximum scaled prediction variance of the designs from a GA and theoretically optimal designs are
shown in Table 2. As shown in Table 2, the newly generated experimental designs (‘GA4F19R_01’
and ‘GA4F19R_02’) are very efficient compared to Hoke design with respect to the G- and IV-
optimality criteria for n = 19. For n = 21, the experimental designs from GA, ‘GA4F21R_01’ and
‘GA4F21R_02’ are superior to small composite design (SCD) with respect to G- and IV-optimality
criteria. For n = 24, none of the newly generated designs from GA is superior to MB-D and /V-
efficient designs with respect to G- and IV-optimality criteria at the same time. But, all of newly
generated designs from GA are superior to MB-D, IV-efficient and GA G-efficient designs with re-
spect to /V-optimality criterion. For n = 29 and n = 41, all of the experimental design generated from
GA are superior to Face-centered cube (FCC) design and AP design with respect to the /V-optimality
criterion. So, there are small improvements in both average and maximum scaled prediction variances
of the response for all cases. For example, the average and maximum scaled prediction variances of
face-centered cube (FCC) are 15.061 and 22.237, whereas those of one GA design, ‘GA4F29R_03’,
are 10.331 and 20.341.

For k = 5 design variables, we consider four different cases, that is, n = 26, 30, 31 and 41. The
Pareto optimal solutions marked by ‘®’ are plotted in Figure 4 and the minimum, average and maxi-
mum scaled prediction variance of the designs from a GA and theoretically optimal designs are shown
in Table 3. As shown in Table 3, the newly generated experimental design, that is, ‘GA5SF26R_01’ is
very efficient compared to the other four designs with respect to the G- and IV-optimality criteria for
n = 26. For n = 30 and n = 31, the four experimental designs from GA are superior to MB-D and
FCC with respect to G- and I'V-optimality criteria, respectively. For n = 41, all of the experimental
design generated from GA are superior to AP design with respect to the G- and /V-optimality cri-
terion. So, there are small improvements in both average and maximum scaled prediction variances
of the response for all cases. For example, the average and maximum scaled prediction variances of
Hoke design are 18.623 and 29.302, whereas those of the GA design, ‘GASF26R_01’, are 13.476
and 27.776. Consequently, as we can see the results, since the efficiencies are not always monotonic
when we consider two design optimality criteria simultaneously; the trade-off between the competing
optimality criteria can not be easily assessed.
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Table 2: Scaled prediction variances of current designs and GA-Designs for k = 4
k n " Desion T Scaled Prediction Variance at Shrinkage Level = |
‘ gn ype Minimum Average Maximum
4] Hoke 7.006 15.901 47.032
4 19 0 GA4FI9R_01 4903 11.006 24.640
0 GA4FI9R_02 7.023 14,423 24410
5 SCD 11.262 35378 146.391
4 21 0 GA4F21R_01 5.802 11.569 28.627
0 GA4F21R_02 5.156 12.272 26.745
0 MB-D 7.258 12.665 20.813
0 GA_G-efficient Design 7.998 12.996 19.598
3 1V-Efficient 7.530 11.928 29,439
l GA4F24R_01 6.108 12.352 21.118
1 GA4F24R_02 5.847 11.471 21.289
4 24 1 GA4F24R.03 5.939 11.468 21.541
1 GA4F24R_04 5.848 11.192 21.570
0 GA4F24R_05 6.040 10.831 22.146
1 GA4F24R_06 5.642 10.498 23.276
1 GA4F24R_07 5.960 10.348 23.291
1 GA4F24R_08 5.487 10.227 23.371
5 FCC 11.819 15.061 22.237
4 29 0 GA4F29R 01 5.338 10.713 19914
0 GA4F29R_02 5.244 10.474 20.117
0 GA4F29R_03 4.564 10.331 20.341
5 AP 7.440 13.510 37.799
4 41 0 GA4F41R_01 7.166 11.807 18.325
0 GA4F41R_02 6.643 10.003 18.907
0 GA4F41R_03 5.593 9.529 20,101
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Figure 3: Pareto optimal solutions fork = 4
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Table 3: Scaled prediction variances of current designs and GA-Designs fork = 5

You-dJin Park

k

n

=~
[

Design Type

Scaled Prediction Variance at Shrinkage Level = 1

Minimum Average Maximum
0 Hoke 6.399 18.623 29.302
5 SCD 13.314 84.530 742.389
5 26 0 GA._ G-efficient Design 9.403 16.594 28.795
0 IV-efficient 8.141 18.117 87.099
G GASF26R_01 4.355 13476 27.776
0 MB-D 9.371 22.757 46.595
0 GASF30R_01 8517 18.635 37.272
5 30 0 GASF30R.02 8.659 18.445 37.528
0 GAS5F30R.03 71910 18.042 38.242
0 GASF30R_04 7.531 16.768 43.685
5 FCC 14.254 19.953 32.165
0 GASF31R. (01 8.357 16.761 30.721
5 31 0 GASF31R.02 8.542 16.581 30924
0 GASF31R.03 7.703 16.125 31.546
0 GAS5F31R. 04 7.156 15.941 32.127
S AP 8.180 21.228 90.955
5 41 0 GASF41R_01 9.084 17.700 30.884
0 GASFAIR_02 8.753 16.904 31.027
0 GASF41R_03 8.031 15.463 38.425
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5. Conclusion

Figure 4: Pareto optimal solutions fork = 5

A major criticism is that optimal response surface designs developed under the assumption that the
prespecified optimality criterion can have low efficiencies compared to another experimental design
when another optimality criterion is employed. So, it is necessary to develop the multi-optimal (or
multiple-objective) response surface designs which guarantee high design efficiencies (or low average
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or maximum scaled prediction variances) under many design criteria considered. In this paper, we
discuss the construction of multi-optimal response surface designs and show that the use of the genetic
algorithms to find G- and IV-efficient designs for three different number of design variable cases.
Through the GA, we have shown that particular designs have outperformed over other designs with
respect to G- and IV-optimality criteria. To assess the quality of the constructed designs over cuboidal
region from genetic algorithms, by investigating the minimum, maximum and averages of the scaled
prediction variances of the designs, we could reach the following conclusions:

Based on the average and maximum scaled prediction variances for k = 3, 4 and 5 design vari-
ables, the computer generated designs from a genetic algorithm (GA) have better statistical property
than does the theoretically optimal designs such as Hoke and Mitchell-Bayne’s DETMAX algorithms
(1978), FCC, SCD and AP designs and these multi-optimal designs (MODs) are more fiexible and
useful than single-criterion optimal designs, which have been increasingly criticized as being overly
myopic. From the GA search procedure, we could conclude that the symmetrically distributed GA-
designs without center point provides minimum of average and maximum scaled prediction variances
at the same time. In conclusion, multi-optimal response surface designs can overcome some of the
criticism when we find optimal experimental designs under single-objective optimal design criterion.
They also can satisfy the practical needs of many researchers and are robust to various optimality
criteria because the multiple-objective response surface designs provide more extensive availability in
practice. We, however, should note that since the performance of designs can be changed by selecting
number of experimental points and adding or removing center points in the considered designs, fur-
ther investigation on the variance properties should be needed. Furthermore, since the selection of a
design via an optimality criterion is dependent on an approximated response surface model proposed
by experimenters prior to data coliection, it should also be noted that different models lead to different
design optimality values and thus different design should be selected.

Appendix:

Table A.1: 3-Factor multi-optimal designs for k = 14; GA3F14R_01

X X X3
-1 -1 -1
1 -1 -1
0 0 -1
-1 1 -1
1 1 -1
0 ~1 0
-1 0 0
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21: GA4F21R_02

Table A.2: 4-Factor multi-optimal designs for k

X,

X3

X
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26: GASF26R_01

Table A.3: 5-Factor multi-optimal designs for k
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