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Abstract

Estimation of each of mean response, difference between mean responses and
derivatives of the response function is a possible objective of a response surface
design. These objectives are to be achieved simultaneously when an experiment
is designed to improve mean response. For the situations where departure from
the assumed model is suspected, first and second order designs for improving
mean response are obtained by combining minimum bias designs for the individual
design objectives. D- and A-optimalities are used for selecting specific second
order designs. The results are applied to central composite designs.

1. Introduction

A response function is the relationship between a response variable and
independent variables. Response surface methodology (RSM) is a statistical
method used to solve problems which are pertinent to a response function
associated with a process. One of the important applications of RSM is to
improve mean response of the process by modifying setting of the independent
variables. The strategy is to use a sequence of experiments to locate and then
explore regions over which better mean responses are expected. From each
experiment we first need to estimate derivatives of the response function in order
to identify the direction to which setting of the independent variables is to be
altered. Identification of the direction enables us to find a region where improved
responses are expected. However, there may be alternative directions and
consequent alternative regions. Then comparisons between mean responses are
necessary. Amount of improvement is also to be evaluated for determining which
of possible alterations of the setting is most practical and beneficial. In order to
reach the right conclusion, we should use response surface designs which permit
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efficient estimation of mean response, derivatives and difference between mean
responses. A major problem within RSM is therefore that of choosing response
surface designs. In practice the response function is usually unknown.
Response surface designs are developed for assumed model of the response
function. This always causes some concern over possible bias due to model
misspecification. [t is necessary to select response surface designs on the basis of
a criterion taking account of this potential bias. Box and Draper (1959, 1963:
introduced the average mean squared error {AMSE) criterion for such situations
and showed that the designs minimizing AMSE are close to the minimum bias
designs. Thence several works on the minimum bias designs has been done since
the designs minimizing AMSE are difficult to derive. Box and Draper (1987) and
Thompson (1973) considered the minimum bias designs for estimating mean
response. The minimum bias designs for the estimation of derivatives and
difference between mean responses were obtained by Myers and Lahoda (1975
and Park (1990).

This paper suggests a class of response surface designs for improving mearn
response under AMSE criterion. Section 2 presents a brief review on the
minimum bias designs for the three design objectives mentioned above. First and
second order designs for improving mean response are obtained in Section 3 bv
combining the minimum bias designs for individual design objectives. In Section
4 gpecific second crder designs are selected by employing the classical D- and A
optimalities as the secondary criterion. Section 5 applies the results to central
composite designs.

2. Minimum Bias Designs

Let z=(z,, 2,, ---, z,)" be a kx1 vector of standardized independent variables. It
is assumed as usual that the region of interest R is a symmetric region centered at
the origin of z Two specific types of such region are R={z|z'z< 1} and R={z'
~1<2z <1 for all ;. They are respectively referred to as the spherical regiorn:
and the cuboidal region. Consider a response surface design consisting of »
experimental runs z,=(2,, 2., -+, 2,) . #=1, 2, -, », which should be chosen
We suppose that the true response function is reasonably approximated by an mth
order polynomial £ "'(2)'§,, where f " (2) is a vector resulting from an mth order
polynomial expansion of z. For example, f "' (2) for m, =1, 2 are (1, 2,, 2., -+, 2&)

and (1, z,, 2,, --. 2., 2}, -+, 2}, 212,. 2,2., -, 2e— 2, ) . Then the model to be fitte:l

can be written as y = X, 8, +¢ where y is the #x 1 vector of observed responses, X
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is the nXx p, design matrix of which »th row is f "'(2z,)’, f. is a p, X1 vector of
unknown coefficients and ¢ is a n#x1 vector of random errors with common
variance o¢°. Suppose further that we wish to protect ourselves against the
polynomial model of order m, =m, -+1 which can be written as y=X,8, + X, 8, +e
where B, is a p, X1 vector of unknown parameters not present in the presumed
model and X, is the nXx p, design matrix associated with g,. If m, =1, «th row
of X, is (2%, -, 24y, 222, 2142, ') 2 1ulm). Then My =X,'X,/n and M,, =
X,"X./n are the moment matrices containing design moments up to order 2m,
and 2m, +1, respectively. The design moments are usually denoted by the square
bracket notation. For example, [/|=Yz,/n and [/j]l=Y2z.z,/n where all
summations are over =1, 2, ---, n. Let z,=f “(z,), where z,=(2!, z!, -, 2})" is
an arbitrary point in R. Then 2, may be partitioned into 2,=(2,,", 2,.’) where 2,, =
£ (z,) and 2,. is the remaining p, x 1 portion of z,. Denote the %1 vectors of
derivatives at z, of the m,th and m.th order polymonials by D, (2,)8, and D, (z,)8,
+D," (z,)B,, where D, (z,)=¢f " (2z,) |0z, and (D,(z,), D, (2,))=af ™ (2,)" | 0z,.
And define

“u = gzﬁ 2)15( 7 dzﬁy 51' = Qﬁ 5(],1 dz(ly and I]’ii = Qj; Dz (zr))D;/(zr»)dzu:

where Q:(./; dz, 'and 7, j=1,2. The elements of u,;, 6; and u,, are the region
moments. The region moment Q f I (z)"' dz is denoted by -
i vy
[

The mean response and derivatives at z, are usually predicted by z,,' & and
D/ (z,1b, where b is the least squares estimator of g,. Representing another arbi-
trary point in R by t,, the difference between mean responses at z, and ¢, is
estimated by (z.," -¢,,"}b. Box and Draper (1959), Park (1990) and Myers and
Lahoda (1975) obtained AMSEs of z,,' b, (2,." —¢,, )b, D,"(z,)b, which are given by

Jr=tru. M)+ al,ﬁz’(MunM-—M'uu —p M. )B.
= V& + Br,
I = trlly, —6,0/ )M
+ —5’?— B (M, —6,0/ YM—M (g, —6,6." ) (p,— 6,8, ) M

+ (I.L,zg _bz 62’/ ))B’
=Vr+ Br,
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and

J3 = tr([‘uMilx) + ‘;_1%“ ﬁzl(M/IluM“M/lllz ‘"’ﬁ12/M+ ﬁzz)ﬂz
= V;*‘Bg

where M=M 'M, and {r denotes trace. V! and B! for j=R, D, S are the
average variances and average squared biases. It is desirable but intractable tc
derive the designs minimizing J* However, since the designs minimizing B!
were shown to be close to the designs minimizing J§ for most practical situations,
we consider the designs minimizing B*. Such designs are called the minimum
bias designs. Box and Draper (1959, 1987), Myers and Lahoda (1975) and Park
(1990) obtained first and second order minimum bias designs for individual design
objectives. The corresponding moment conditions are summarized in (Table 1;
and (Table 2). Other design moments through order five not mentioned in the
tables are all zero.

( Table 1 ) Moment Conditions of First Order Minimum Bias Designs

design objective moment conditions
[Z] =0 forall ¢
[i7] =0 forall {#;
estimation of mean response (i1 =0 forall 7 ; and !
[l] =1 for all ¢
. . . e ¥ = forall ¢
estimation of difference or derivatives I[z"];‘l] B fgi all ;’ i and 1

{ Table 2 : Moment Conditions of Second Order Minimum Bias Designs

moment conditions

design objective T T T
spherical region

] cuboidal region

estimation of mear response

S N i . . )
l egid]/lid] = 3/(k+4) ] d42d]/1ié] = 3/5
or difference Cledj i e = 1 et 4) Jy lidggl/lid = 1/3 J

| estimation of derivatives Lizdl [lid] = 3/0et2) | [addil ][] =1
' ) [2ijj [id) = 1/(k+2)  [iijj1/0id] = 1/3

i - e - - -
improvement of mean resbonse [17i7]/1ii] = 3/(k+a) [27d)/[ii] = 3/(3+a)
) 42 S ; . Ce . ..
P b U leig7) i)l = 1/ {k+a) ‘ [2e77))1id] = 1/3

o

— -l U [ —
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3. Designs for Improving Mean Response

In this section we derive first and second order designs for improving mean
response. As discussed in Section 1, such designs should permit efficient
estimation of mean response, difference between mean responses and derivatives
of the response function. That is, all the three design objectives are to he
reasonably covered. (Table 1) shows that the first order minimum bias designs
for mean response estimation are also the minimum bias designs for the other two
objectives. The minimum bias designs for mean response estimation may he
empolyed for improving the mean response. However, (Table 2) reveals that in
case of second order designs some measure of compromise must be introduced in
combining three classes of minimum bias designs. As the design objective
changes, only [/i7j]/[7¢] and/or [iiii]/[ii] change.We can thus effect a
compromise among the objectives by adjusting the ratios [7777]/[7i] and/or
[7777]/[i{i] to appropriate values. Second order designs for improving mean
response are therefore chosen from the designs specified in the last row of
{Table 2} by setting « to a desirable value.

Denote the moment matrices of such second order designs by M, (a) and M, ().
Let BXa)=np, C*(a)p. /¢’ denote the corresponding average squared bias, which
is obtained by replacing M in B* with M(a)=M, ' (a) M, (a). We wish to determine
the value of « which makes all the three B*(«)'s small in some sense. It can he
shown that Mi(e) 8,5, M(a) and 8, vanish. Therefore Bi(a)=Bt(a) and we
consider only Bfia) and B#(a). When we do not have any prior knowledge n
unknown f., the average squared bias averaged over B,'f, =» may be a useful
measure for evaluating model inadequacy for given design and a reasonable region
of » A similar approach has been used by Vining and Myers (1991). B*(+)

averaged over 3. 1s obtained as » - t7 [C*(«)]/ p., where

6k(k+6) (+8) (—2a—k+4) —k(k: +158+74) (k +a)’
6(k+2) (k+4) (£ +6) (k+a)*

tr Ctla)

and

2k(k+4) (k+8) (—2a—k+2)+kk’ +11k +42) (k +a)*
2k +2) (k+4) (b +a)

tr|CHa). =

for the spherical region and
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01 . —3402k(1 +2a)+EQE5k +63k+712) 3 +a)’
rlCila)] 3670(3 +a)’

and

—270k(3 +2a) +£(58° +334 +124) (3 +a)’
90(3 +a)?

r[CHa) =

for the cuboidal region. [t can be shown that the value of o minimizing each of
tr [CHa)] is equal to that of the minimum bias designs for each design objective.
Denote the value of « minimizing #7[C}a)] by o*. Then the ratio of B¥«!) and
B¥a) averaged over B.'B.=r, tr|CHa?) ]/ tr [CH«)], can be interpreted as the
efficiencies of the designs specified in the last row of (Table 2} relative to the
minimum bias designs for individual objectives in regard of the average squared
bias. We denote the efficiencies by e¢ff (a). In order to determine the value of a,
we consider the maximin optimality maximizing the minimum efficiency, i.e., max,
min, ¢ffia). This optimality is appropriate when we wish to protect the design
against the worst  The optimal values of «, say o, and corresponding efficiencies
are obtained numerically and tabulated for 2< k<8 in {(Table 3) The
efficiencies are reasonably high.

( Table 3) Optimal Values of a

spherical region cuboidal region
0 R I AR
a* L éff, (a®) a* eff, (a®)
| Z 3.3109 { 0.9541 1.2717 0.9377
' 1 3.2966 0.9760 12263 | 0.9592
4 . 32886 - 0.9859 11951 | 09712
5 3283 | 09910 1.1722 0.9785
6 3.2803 \ 0.9939 1.1546 0.9834
7 3.2179 | 09957 1.1407 09868
8 32762 ‘ 0.9969 11295 | 0.9892

4. Secondary Criteria

The previous section suggested a class of second order designs for improving
mean response. FHowever, nonzero design moments of the second order designs:
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are not completely determined. In order to select a specific design from the class
we need a secondary criterion. It can be shown that B(«*)’s are independent of

the undetermined moments. We therefore consider the secondary criteria
associated with the average variances V#¥(a*)’s, which are obtained by replacing M =
in V¥s with M '{«*). The average variances depend on the experimental design
only through M ' (»*). One way to select a good experimental design is to make
M, (a*) small in some sense. This approach is conceptually identical to the
classical optimal design theory. For the purpose of illustration D- and A

optimalities are employed as the secondary criteria.

4.1 D-Optimal Designs

D-optimality minimizes det(M,'(a*)), where det denotes determinant. We
select the designs minimizing def (M ' («*)} from the class of second order designs
suggested in Section 3. Let A,, u, and A, denote [i7], [i7i7] and [7777]
respectively. Then det{ M, (a*)) is obtained as

detiM,, (a*)) = 28 "(B+a) V2 (B +2) —kE+a®) A}
for the spherical region and
det(M, (a®) = 33 +a*) *(6—a*)* 2 2{(6—a*) +(3+ank—9(3 +a® kA,

for the cuboidal region. Minimization of det(M;' («*) is equivalent to
maximization of det(M, (a*)). Therefore, setting the derivative of det(M, (a*))
with respect to A, equal to zero, the optimal value of A, is obtained as

Lo EF2) (k+3)
© T ke +5) (ktar)?

for the spherical region and

\ - k439 A3 +a") +h—1
' 9k(%k+5)

for the cuboidal region. Once A, is determined, A. and u, are computed from the
relationships among the nonzero design moments given in (Table 2. The
optimal values of A;, x4, and A, are tabulated in (Table 4).
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4.2 A-Optimal Designs

In selecting a specific design from the class of second order designs suggested
in Section 3, we can employ A-optimality minimizing t» (M (a®). tr(M ' (a®) is
obtained as

triMi @) AR o H2E 20+ DR + 4 —ak
~(b—a) {k +2a*k +(a® + 1B —(a* +2)k —4} 1, ]

for the sperical region and

tr(MHa*)= B '[3(6—a*) (3 +a%k’ +(10a* ~3a* +144)k° + (18 —6a* —13a* )i

—3{9(6—a*) (3 +a"k’+3(3+a*) (12 +T7a) k"
—2(8a* + 57a* +99)k + 206 —a®)? 1A, ]

for the cuboidal region, where
A = 22k+a"){(k+2)—klk+a®)" LA,
and
B =66—a*){(6—a*) + (3 +a*)k-—93 +a*kAiA,.

By equating the derivatives of (M, '(a*)) with respect to A, to zero, we obtain

the optimal value of A, as

RE—[2BE (k" + Qa*+1)k"+(a* +4)k +4}]'”
(k+a*) {E+2a* k' + (a* + 1)k — (o +2)k—4 )

Ay =

for the spherical region and

A, =

EE — | F{(34+a") (- 2a* +6a* +36)k°+2(6— a*)Ta*’ +60a* +117)k +2(6—a”)t
9B +a*)X 96 a*)3+a”)k* +33+a*) 12 +7a*)k? - 2(8a*’ +57a* +99)k—2(6—a*)?}

for the cuboidal region where

E = (k+a){k+a*+2k+Q2a*+1)E+4—0a")}
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and
F =33 +a*13(6-a*) (3 +a* )k’ + (10a* —3a* +144)k—(13a*' +6a*—18) }.
The A-optimal values of A,,u, and 1, are computed and also tabulated in {Table 4, .

{ Table 4 ) D- and A-Optimal Values of Nonzero Design Moments

(a) Spherical region

D-optimal A-optimal
k . . S
i} [i2i7] [iij 7! [i7] (277} [i277]
2 (+.2690 0.1520 0.0507 0.2712 0.1532 0.0511
3 (+. 1985 0.0946 0.0315 0.2156 0.1027 0.0343
4 (1.1601 0.0659 0.0220 0.1783 0.0734 0.0247 |
5 (1.1352 0.0490 0.0163 0.1518 0.0550 0.0183 i
6 (1176 |, 0.0380 0.0127 0.1321 0.0427 0.0142
7 .1043  0.0304 0.0101 0.1169 0.0341 0.0114
8 (+.0938 0.0250 © 0.0083 0.31047 0.0279 0.0093
(b) Cuboidal region

3 D-optimal ‘ A-optimal

i i) [iiii] [i¢7 7] [7¢]  + [diid] [i77 7]

i . s s e - . —_—et e S,
2 1 (13699 0.2598 0.1233 0.3663  0.2573 0.1221

|
3 (1.3441 0.2443 0.1147 0.3652 , 0.2592 0.1217
4 (+3335 0.2385 0.1112 0.3627  0.2594 0.1209
5 (1.3284 0.2361 0.1095 0.3601 0.2589 0.1200 ;
6 (13257 0.2352 0.1086 0.3578 0.2584 0.1193 |
7 (+.3244 0.2350 0.1081 0.3558 0.2578 0.1186 ‘
8 (+.3236 0.2351 0.1079 0.3541 = 0.2572 0.1180 ‘

5. Application to Central Composite Designs

The most useful class of second order designs is probably that of central
composite designs The results obtained in the previous two sections are appliexi
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to the central composite designs. A central composite design consists of 2*
(fractional) factorial design points ( ¢, -, *¢), 2k axial points (+w, 0, ---, 0), -
(0, -, 0, +w) and », center points. Nonzero design moments of order less than or
equal to five are A,, A, and p,. The relationship among the nonzero design

moments, ¢, w and #, are
Lown o= 242wt Am o= ¢'2Y and uom o= 27+ 2wt

where #=2""%+2% +xn,. By simultaneously soving these equations, ¢ and w arc¢
obtained as

c = [1+{(u4/h “‘1)2 \'k-—qul}l;Zle,iﬁlz/z/lul"?‘ and w = C{(/,L;/l‘, ~1)2<k q‘}]/’d'

Setting « to o, the ratios u,/A, and A,/A, are given. Once the ratios are given.
factorial and axial design points are determined from the above equations.
Therefore the secondary criterion affects only #,. The problem of choosing «
secondary criterion can be considered as that of determining #,. We refer to
Draper (1982) for a discussion on the center points in second order designs. The
values of ¢, w and the numbers of center points required by D- and A-optimalitie:
{denoted by #., and ., respectively) are presented in {Table 5). We let g = 0 for
k<6and g=1 for k=7 (Table 5 indicates that D-optimality requires too mam
center points for & = 5.

{ Table 5) D- and A-Optimal Values of ¢, w and n,

spherical region cuboidal region
b B . IR O ——

u' Hyp P a 4 w Rup Ry

U P

2| 06137 08679 | 3.2000 31077 | 07624 | 0.9300 | 29637 , 3.0693
05207 « 08757 | 4.6510 | 3.1704 | 0.7145 | 10417 | 41729 ' 31236
4 | 04537 | 09073 | 68571 | 3.6969 | 0.6778 | 11793 | 6.3840  3.9405
5 | 04042 09614 | 10.3459 | 4.6169 | 0.6504 | 13491 10.3026 | 56965
6 | 03670  1.0381 | 156667 | 55736 | 0.6301 = 15573  16.8848 | 8.5629
7 | 03487 | 09864 | 153333 | 52660 | 0.6302 | 15601 153767 | 7.1234
|8 | 03230 10866 235864 | 6.0742 | 06153 | 18136  26.0599 | 11.4450

L
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