• Title/Summary/Keyword: Resolution Schemes

Search Result 161, Processing Time 0.03 seconds

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

Supersonic Base Flow by Using High Order Schemes

  • Shin, Edward Jae-Ryul;Won, Su-Hee;Cho, Doek-Rae;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.723-728
    • /
    • 2008
  • We performed numerical analysis of base drag phenomenon, when a projectile with backward step flies into atmosphere at supersonic speed. We compared with other researchers. From our previous studies that were 2-dimensional simulation, we found out from sophisticated simulations that need dense mesh points to compare base pressure and velocity profile after from base with experimental data. Therefore, we focus on high order spatial disceretization over 3rd order with TVD such as MUSCL TVD 3rd, 5th, and WENO 5th order, and Limiters such as minmod, Triad. Moreover, we enforce to flux averaging schemes such as Roe, RoeM, HLLE, AUSMDV. In present, one dimensional result of Euler tests, there are Sod, Lax, Shu-Osher and interacting blast wave problems. AUSMDV as a flux averaging scheme with MUSCL TVD 5th order as spatial resolution is good agreement with exact solutions than other combinations. We are carrying out the same approaches into 3-dimensional base flow only candidate flux schemes that are Roe, AUSMDV. Additionally, turbulence models are used in 3-dimensional flow, one is Menter s SST DES model and another is Sparlat-Allmaras DES/DDES model in Navier-Stokes equations.

  • PDF

A Study on the Wavelets on Irregular Point Set (불규칙 점 집합에서의 웨이브렛에 관한 연구)

  • Inn-Ho Jee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.69-74
    • /
    • 2023
  • In this paper we review techniques for building and analyzing wavelets on irregular point sets in one and two dimensions. In particular we focus on subdivision schemes and commutation. Subdivision means the skill that approximates the initial lines or mesh into a tender curve or a curved surface by continuous partitioning operation. The key to generalizing wavelet constructions to non-traditional settings is the use of generalized subdivision. The first generation setting is already connected with subdivision schemes, but they become even more important in the construction of second generation wavelets. Subdivision schemes provide fast algorithms, create a natural multi-resolution structure, and yield the underlying scaling functions and wavelets we seek.

ADAPTIVE GRID SIMULATION OF HYPERBOLIC EQUATIONS

  • Li, Haojun;Kang, Myungjoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.279-294
    • /
    • 2013
  • We are interested in an adaptive grid method for hyperbolic equations. A multiresolution analysis, based on a biorthogonal family of interpolating scaling functions and lifted interpolating wavelets, is used to dynamically adapt grid points according to the physical field profile in each time step. Traditional finite-difference schemes with fixed stencils produce high oscillations around sharp discontinuities. In this paper, we hybridize high-resolution schemes, which are suitable for capturing singularities, and apply a finite-difference approach to the scaling functions at non-singular points. We use a total variation diminishing Runge-Kutta method for the time integration. The computational cost is proportional to the number of points present after compression. We provide several numerical examples to verify our approach.

Phase Control Optimization at Waveguide Crossover and Its Application to 45° Optical Hybrid for Demodulating 8DPSK Optical Signals

  • Jeong, Seok-Hwan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.711-720
    • /
    • 2021
  • A novel optical hybrid device that doubles the multilevel demodulation resolution by adding the optical interferometer with a waveguide crossover is proposed, theoretically analyzed and experimentally verified. We report two types of all-passive phase control schemes that will be referred to as a phase compensation scheme and a phase optimization scheme. We also apply the proposed phase control schemes to a 45° optical hybrid consisting of two parallel 90° optical hybrids together with the proposed phase control scheme for demodulating 8-level differential phase shift keying optical signals. Octagonal phase response with low wavelength sensitive excess loss of <0.8 dB over 31-nm-wide spectral range will be demonstrated in the InP-based material platform.

A-HILBERT SCHEMES FOR ${\frac{1}{r}}(1^{n-1},\;a)$

  • Jung, Seung-Jo
    • The Pure and Applied Mathematics
    • /
    • v.29 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • For a finite group G ⊂ GL(n, ℂ), the G-Hilbert scheme is a fine moduli space of G-clusters, which are 0-dimensional G-invariant subschemes Z with H0(𝒪Z ) isomorphic to ℂ[G]. In many cases, the G-Hilbert scheme provides a good resolution of the quotient singularity ℂn/G, but in general it can be very singular. In this note, we prove that for a cyclic group A ⊂ GL(n, ℂ) of type ${\frac{1}{r}}$(1, …, 1, a) with r coprime to a, A-Hilbert Scheme is smooth and irreducible.

Spatially Scalable Kronecker Compressive Sensing of Still Images (공간 스케일러블 Kronecker 정지영상 압축 센싱)

  • Nguyen, Canh Thuong;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.118-128
    • /
    • 2015
  • Compressive sensing (CS) has to face with two challenges of computational complexity reconstruction and low coding efficiency. As a solution, this paper presents a novel spatially scalable Kronecker two layer compressive sensing framework which facilitates reconstruction up to three spatial resolutions as well as much improved CS coding performance. We propose a dual-resolution sensing matrix based on the quincunx sampling grid which is applied to the base layer. This sensing matrix can provide a fast-preview of low resolution image at encoder side which is utilized for predictive coding. The enhancement layer is encoded as the residual measurement between the acquired measurement and predicted measurement data. The low resolution reconstruction is obtained from the base layer only while the high resolution image is jointly reconstructed using both two layers. Experimental results validate that the proposed scheme outperforms both conventional single layer and previous multi-resolution schemes especially at high bitrate like 2.0 bpp by 5.75dB and 5.05dB PSNR gain on average, respectively.

Adaptive Nonlinear Artificial Dissipation Model for Computational Aeroacoustics (전산공력음향학을 위한 적응형 비선형 인공감쇄모형)

  • Kim Jae Wook;Lee Duck Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.11-19
    • /
    • 2001
  • An adaptive nonlinear artificial dissipation model is presented for performing aeroacoustic computations by the high-order and high-resolution numerical schemes based on the central finite differences. An effective formalism of it is devised by combining a selective background smoothing term and a well-established nonlinear shock-capturing term which is for the temporal accuracy as well as the numerical stability. A conservative form of the selective background smoothing term is presented to keep accurate phase speeds of the propagating nonlinear waves. The nonlinear shock-capturing term that has been modeled by the second-order derivative term is combined with it to improve the resolution of discontinuities and stabilize the strong nonlinear waves. It is shown that the improved artificial dissipation model with an adaptive control constant which is independent of problem types reproduces the correct profiles and speeds of nonlinear waves, suppresses numerical oscillations near discontinuity and avoids unnecessary damping on the smooth linear acoustic waves. The feasibility and performance of the adaptive nonlinear artificial dissipation model are investigated by the applications to actual computational aeroacoustics problems.

  • PDF

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF

Atmospheric Numerical Simulation for an Assessment of Wind Resource and an Establishment of Wind Map on Land (풍력자원 평가 및 육상바람지도 작성을 위한 고해상도 대기유동장 수치모의)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Kim, Hyun-Goo;Choi, Hyun-Jung;Lee, Soon-Hwan;Kim, Dong-Hyuk;Kim, Min-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.529-531
    • /
    • 2009
  • To construct the wind map for mainland Korea, the well designed atmospheric numerical modeling system was used. Three nest domains were construced with spatial resolutions between $10{\times}10km$ up to the hightest resolution of $1{\times}1km$. Parameterization schemes like MRF(PBL), RRTM(radiation), Grell(cumulus) were chosen since wind data simulated is in better agreement with the observed wind data. High-resolution atmospheric numerical model was applied to simulate the motion of the atmosphere and to produce the wind map around the South Korea. The results of several simulations were improved compare to the past system, because of using the fine geographical data, such as terrain height and land-use data, and the meteorological data assimilation.

  • PDF