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Abstract 
 

We performed numerical analysis of base drag 
phenomenon, when a projectile with backward step 
flies into atmosphere at supersonic speed. We 
compared with other researchers. From our previous 
studies that were 2-dimensional simulation1), we found 
out from sophisticated simulations that need dense 
mesh points to compare base pressure and velocity 
profile after from base with experimental data. 
Therefore, we focus on high order spatial 
disceretization over 3rd order with TVD such as 
MUSCL TVD 3rd, 5th2), and WENO 5th order3), and 
Limiters such as minmod, Triad. Moreover, we 
enforce to flux averaging schemes such as Roe4), 
RoeM, HLLE, AUSMDV5).  

In present, one dimensional result of Euler tests, 
there are Sod, Lax, Shu-Osher and interacting blast 
wave problems. AUSMDV as a flux averaging 
scheme with MUSCL TVD 5th order as spatial 
resolution is good agreement with exact solutions than 
other combinations. We are carrying out the same 
approaches into 3-dimensional base flow only 
candidate flux schemes that are Roe, AUSMDV. 
Additionally, turbulence models are used in 3-
dimensional flow, one is Menter’s SST DES model6) 
and another is Sparlat-Allmaras DES/DDES model7) 
in Navier-Stokes equations.  
 

Theoretical Fundamental 
 
Governing Equations 

Fluid flow is governed by the Navier-Stokrs 
equations. The governing equations can be 
summarized as a following conservation form, the 
continuity, momentum, and energy equation. 
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Where r , iu , te , ijs and iq are density, the velocity 
components, total energy per unit mass, viscous stress 

tensors and heat flux, respectively. ijd is kronecker 
symbol. The system of equations is followed by a 
perfect gas. For the perfect gas of the equation of state 
is eq. (4). R is the gas constant. 

 
Menter’s SST DES Formulation 

TheK w− model of Wilcox8) with a high Reynolds 
number K e− model is well behaved in the near-wall 
region, where needs no damping function. However, 
the model is strongly sensitive to the free stream value 
of w . This sensitivity seems to be a factor mainly for 
free shear flows, and does not seem to adversely affect 
boundary layer flows. On the other hand, 
the K e− equations are relatively insensitive to free 
stream values, but behave poorly in the near wall 
region. 

Menter proposed a combined K e− / K w− model 
which uses the best features of each model. The model 
uses a parameter 1F to switch from K w− to K e− in the 
wake region to prevent the model from being sensitive 
to free stream conditions. 
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The terms on the right-hand side of eq. (7)~(8) 
represent eddy-viscosity production, dissipation and 
conservative diffusion, respectively. Furthermore, the 
last term in the w -equation describes the cross 
diffusion. 

The turbulent eddy viscosity is obtained from 
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The eddy-viscosity production of turbulence is 
given by 
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The function 1F in eq. (8), which blends the model 
coefficients of the K w− model in boundary layers 
with the transformed K e− model in free-shear layers 
and free stream zones, is defined as 

4

2
1 2 2

500 4tanh min max , , w

Kw

K K
F

d d CD d

m rs

b w rw∗

⎡ ⎤⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥= ⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦⎣ ⎦

      (12) 

723



AJCPP 2008 
March 6-8, 2008, Gyeongju, Korea  

Whered stands for the distance to the nearest wall 
and KCD w is the positive part of the cross-diffusion 
term. 
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The auxiliary function 2F in eq. (9) is given by 
2
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The model constants are 
1 0.31a = , 0.09b∗ = , 0.41k =  
Finally, the coefficients of the SST turbulence 

model b , a , Ks and ws are obtained by blending the 
coefficients of the K w− model, denoted as 1f , with 
those of transformed K e− model denoted as 2f . The 
corresponding relation reads  

( )1 1 1 21F Ff f f= + −    (15) 
The coefficients of the inner model K w− are given 

by 
1f ; 1 0.85Ks = , 1 0.5ws = , 1 0.075b =  
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The coefficients of the outer model K e− are given 
by 
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Strelets6) introduced a DES model based on 

Menter’s SST model. In the SST model, the turbulent 
length scale of the model in terms of K and w  reads 

1/ 2 /( )Kl Kw b w∗− = .    (16) 
This length scale should be replaced in DES 

modification length scale. 
min( , )K DESl l Cw

%
−= Δ , max( , , )x y zΔ = Δ Δ Δ  (17) 

The only term of the SST model is the dissipative 
term of theK -transport equation. 

3 / 2 /K
RANS KD K K l wrb w r∗

−= =   (18) 
The modification of DES dissipation term of theK -

transport equation is  
3 / 2 /K

DESD K lr %=     (19) 
Menter’s SST model is based on a blending 

of K e− and K w− , Strelets calibrated the model by 
running both the K e− and K w− DES models on 
isotropic turbulence.  

This lead to 0.61K
DESC e− = and 0.78K

DESC w− = . The 
traditional blending function was used to blend 
between the two constants, 

( )1 11K K
DES DES DESC FC F Cw e− −= + − .  (20) 
The recommended constants were used in the 

current study. 
 
Spalart-Allmaras DES / DDES Formulation 

The Spalart-Allmaras one-equation model solves a 
single partial differential equation for a 
variable n% which is related to the turbulent viscosity. 

The model includes a wall destruction term that 
reduces the turbulent viscosity in the log layer and 
laminar sublayer, and trip terms that provide a smooth 
transition from laminar to turbulent. 

The Spalart-Allmaras turbulence model can be 
written in tensor notation as follows. 
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The terms on right-hand side represent eddy-
viscosity production, conservative diffusion, non-
conservative diffusion and near-wall turbulent 
destruction.  

The turbulent eddy viscosity is obtained from 
1t vfm rn%=     (22) 

The production term is evaluated with the following 
formulae 
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The term controlling the destruction of the eddy 
viscosity read 
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The various constants are defined as 
1 0.1355bC = , 2 0.622bC = , 1 7.1vC = , 2 5vC =  

2 / 3s = , 0.4187k = , 2
1 1 2/ (1 ) /w b bC C Ck s= + +  

2 0.3wC = , 3 2wC =  
 

The standard Spalart-Allmaras model uses the 
distance to the closest wall as the definition for the 
length scale d , which plays a major role in 
determining the level of production and destruction of 
turbulent viscosity. The DES model, as proposed by 
Shur et al.9) replacesd everywhere with a new length 
scaled% , defined as 

min( , )DESd d C% = Δ , max( , , )x y zΔ = Δ Δ Δ  (27) 
Where the grid spacing, Δ , is based on the largest 

grid space in the x , y or z directions forming the 
computational cell. The empirical constant DESC has a 
value of 0.65. 

For Delayed Detached Eddy Simulation (DDES)7), 
the parameter r is slightly modified relative to the S-A 
definition, in order to apply to any eddy-viscosity 
model, and be slightly more robust in irrotational 
regions. 
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Similar to r in the S-A model, this parameter equal 
1 in a logarithmic layer, and falls to 0 gradually 
towards the edge of the boundary layer. 
The quantity dr is used in the function. 
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[ ]( )31 tanh 8d df r≡ −    (29) 

Which is designed to be 1 in the LES region, 
where 1dr � , and 0 elsewhere. 
The application of the above procedures to S-A based 
DES, proceeds by re-defining the DES length scaled% : 

max(0, )d DESd d f d C% ≡ − − Δ    (30) 
Setting df to 0 yields RANS (d d% = ), while setting it 

to 1 gives min( , )DESd d C% = Δ .  
 

Computational Algorithm 
 
Flux Splitting Methods 

Flux quantities are computed using Roe4) flux 
difference splitting. The flux across each cell 
face 1/ 2i + is computed using Roe numerical flux 
formula: 

L R R L1
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⎡ ⎤= + − −⎣ ⎦E E Q E Q A Q Q  (31) 

Here LQ and RQ are the state variables to the left and 
right of the interface 1/ 2i + . The matrix A is computed 
from evaluating 

∂
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with Roe-averaged quantities such as: 
L Rr r r=     (33) 
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is satisfied exactly.  
AUSMDV was constructed with an aim at removal 

numerical dissipation of Van Leer-type vector 
splitting on a contact discontinuity5). The flux across 
each cell face 1/ 2i + is computed using AUSMDV 
numerical flux formula: 
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The AUSMV scheme in which only the 2
1/ 2( )iur + in 

the normal momentum uses FVS: 
2

AUSMV L L R R( ) ( ) ( )u u u u ur r r+ -= +   (39) 
The AUSMD scheme has in the normal momentum: 
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This scheme is a mixture of AUSMV and AUSMD, 
it is modified the normal momentum flux 2

1/ 2( )iur + as 
follows: 
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Where, s is a switching function of the pressure 
gradient: 
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The high order accuracy of 1 1/ 2+E is determined by 
achieving the high order accuracy of the left and right 
conservative variables LQ and RQ . 
 
Reconstruction Methods 

A third-order MUSCL scheme, a fifth-order 
MUSCL scheme and a fifth-order WENO method are 
investigated. MUSCL approach is based on additional 
dependence on adjacent points in order to bring higher 
order accuracy in space. In variable interpolation 
approach, extrapolated values for left and right side 
are calculated as below: 

L
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R
1/ 2 1 R 3 / 20.5 ( )i i iu r uf+ + += − ΔQ .  (44) 

where, u is conservative variables vector and i is cell 
index. 
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The fifth-order limiter is employed, it is proposed 
by Kim and Kim2). 

L L, 1 L, L, L, 1
1 2 / 11 24 3
30 i i i ir r r rb − +⎡ ⎤= − + + −⎣ ⎦ , (46) 

R R, 2 R, 1 R, 1 R,
1 2 / 11 24 3
30 i i i ir r r rb + + +⎡ ⎤= − + + −⎣ ⎦ . (47) 

Where monotonicity is maintained by limiting the 
fifth-order extrapolation by using 

L L, L( ) max 0,min 2,2 ,ir rf b⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦   (48) 

R R, 1 R( ) max 0,min 2,2 ,ir rf b+⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦   (49) 
 

The finite difference 5th-order accuracy WENO 
scheme suggested by Jiang and Shu3) is used to 
evaluate the conservative variables. The WENO 
scheme for a variable 1

2

L
i +Q can be written as: 

1
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where, e is introduced to prevent the denominator 
becoming zero. In their paper, e is taken as 10-6. 
The 1

2

R
i +Q is constructed symmetrically as 1

2

L
i +Q at 1/ 2i + . 

 
Time Integration 

After spatial discretizations of governing equations, 
the conservation laws reduce to either a scalar or a 
system of ordinary differential equations in time, 
which can be written in the form: 

( )d

dt
=

Q R Q     (59) 

In this study, a classical fourth-order Range-Kutta 
method is employed, which can be written as: 
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Computational Results 
 
Computational Setup 

We employed experimental condition to 
computational initial condition, which was 
axisymmetric supersonic base flow of Herrin and 
Dutton10). Freestream Mach number and a unit 
Reynolds Number are 2.46 and 45×106 respectively. 
The base radius of cylinder is 31.75mm. Detailed 
experimental condition marked in Table 1. 

 
Table 1. Experiment condition axisymmetric 

supersonic base flow[4] 
M¥   2.46 
r¥  3/kg m  0.7549 
p¥  kPa  31.415 
T¥  K  145 
U¥  / secm  593.8 
Re 1m−  45×106 

 
Grid used a cylinder length 8R0, where R0 is base 

radius. This length was determined by computing flat 
plate problem with in house code that was included 
Meter’s SST turbulence model. From computing result, 
boundary layer properties are matched approach 
boundary properties of Mathur and Dutton11) 
experimental data. Boundary layer thickness, 
displacement thickness, momentum thickness and skin 
friction were 3.24mm, 0.77mm, 0.22mm and 0.0017 
respectively in approach boundary properties of 
experiment. For skin friction, computational result 
was 0.00165, it was 2% difference value of 
experiment data. Other properties of boundary layer 
are below 10% difference values of experiment datat.  

The outflow was 10R0 downstream from base. The 
farfield boundary was 4.15R0 from the axis of 

symmetry. These were the same dimension of 
Forsythe et al. 12) computing grid. 

The first y+ was 4 on the wall and 20 grid points 
was even spacing within boundary layer. The farfield 
boundary was clustered grid in Fig. 1. Coarse and 
middle grids were 0.35×106 and 1.52×106. The 
cylinder wall boundary was assigned no slip adiabatic 
condition. The farfield and outflow boundary were 
assigned extrapolation. 

 

 
Fig. 1  Base flow grid. 

 
Base flow property 

Steady state RANS results of two different 
turbulence models were agreement with experiment 
velocity profile within boundary layer at 1mm prior 
from base in fig. 2. The cylinder length and 
first y+ were appropriated from steady state RANS 
calculation. 

 

 
Fig. 2  Boundary Layer profile 1mm prior to the base. 

 
All computing cases of base pressure distribution 

were similar trend of experimental data in fig. 3. S-A 
DDES was similar to experimental data, but others 
were similar to steady state RANS result. These 
results were not good fit experiment data, because the 
results supposed low grid resolution on the cylinder 
base. Our previous 2-dimensional test case had 3 times 
grid resolution than 3-dimentional test cases on the 
cylinder base.  
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Fig. 3  Base pressure distribution. 

 

 
Fig.  4 Velocity profile along center. 

  
Reattachment location of experiment was 

0/ 2.8x R » , but All computing cases were located 
between 0/ 2.3 ~ 2.8x R = except SST result in fig. 5. S-
A DES result showed good to match the reattachment 
location. The velocity profile in recirculation zone 
were not matched all computing cases. However, after 
reattachment location, all velocity profiles were 
similar trend to experiment.  

 

 
Fig. 5  downstream velocity profile along x-axis. 

 

For downstream velocity profile, velocity profiles 
of S-A and S-A DES cases were good agreement with 
experiment data in recirculation zone / 1.26x D » in fig. 
5. 

In reattachment location / 1.417x D » , S-A DES and 
SST-DES cases were good agreement with experiment 
data in fig. 5. However, after reattachment location, all 
cases were not matched experiment data.   

 
Conclusion 

 
Detached Eddy Simulation is capable to predict in 

massive separation flow. Strelet DES model was 
applied present supersonic base flow problem. 
Supersonic base flow simulations were carried out 
with DES/DDES of modified Spalart-Allmaras one-
equation turbulence model and Menter’s SST 
turbulence model. In base pressure distribution, S-A, 
S-A DES and S-A DDES showed good results to 
compare experiment. But S-A DES was slightly over 
predicted and S-A and S-A DDES were slightly under 
predicted. In velocity profile along center, most test 
cases good predicted reattachment location. Better 
model was S-A DES. In downstream velocity profile 
after base, S-A DES and SST-DES were good 
agreement with experiment data nearby reattachment 
location. But all test cases were not good prediction 
far distance from reattachment location. The grid of 
test problem was still not dense near base and 
reattachment location. Delayed/detached eddy 
simulation of Spalart-Allmaras model was better 
feature from these results in supersonic base flow 
problem. Future works are needed dense grid study, 
because of good prediction of supersonic base flow 
features.  
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