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Abstract

Compressive sensing (CS) has to face with two challenges of computational complexity reconstruction and low coding
efficiency. As a solution, this paper presents a novel spatially scalable Kronecker two layer compressive sensing
framework which facilitates reconstruction up to three spatial resolutions as well as much improved CS coding
performance. We propose a dual-resolution sensing matrix based on the quincunx sampling grid which is applied to the
base layer. This sensing matrix can provide a fast-preview of low resolution image at encoder side which is utilized for
predictive coding. The enhancement layer is encoded as the residual measurement between the acquired measurement and
predicted measurement data. The low resolution reconstruction is obtained from the base layer only while the high
resolution image is jointly reconstructed using both two layers. Experimental results validate that the proposed scheme
outperforms both conventional single layer and previous multi-resolution schemes especially at high bitrate like 2.0 bpp by
5.75dB and 5.05dB PSNR gain on average, respectively.
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I . Introduction

(CS)

simultaneous sensing and compression

which  allows
2 23~20 oo

Compressive  sensing
attracted significant interest due to its promising
potential in wireless communication and image/video
processing, etc. Relying on signal sparsity property, it
can reconstruct sparse signals from much smaller
number of measurements than Nyquist sampling
theorem originally specifies. The CS measurement
data formed into a column vector, y C R™ of signal
fc R" is modeled as a linear projection y = &f
where the sensing matrix &, which is typically a
random matrix, needs to satisfy the restricted
isometry property[l’Z]. A fully random sensing matrix
requires huge memory space for its storage and high
computation complexity for the random projection and
recovery especially for high dimensional signal. In
this regard, the block-based CS (BCS)® ™ and the
Kronecker CS (KCS)™ have been introduced. In the
view point of conventional frame-based sensing, the
sensing matrix of BCS has only block diagonals, thus
it loses global characteristics of the images despite
preserving the local ones. The Kronecker CS senses
measurement data still in frame-based fashion but in
Its
sensing complexity is considerably reduced by using

a Kronecker product. For a 2D signal, #< R"*", the

separate manner for each signal dimension.

sensing matrix is given as #=R®G? where ®
denotes the Kronecker product, R and G respectively
represent the sensing matrices for each dimension.
The KCS measurement data formed into a matrix is
rewritten as Y= RFG, and its vectorized version y

and measurement constraint are related as:

Il of—ylls= 1| RFG— Y3 1)

where the notation |II. 1, denotes the Lp norm.
One of the widely used CS reconstruction methods
58 which is

known to achieve good CS recovery performance

is the total variation (TV) technique

5t3
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while preserving image edges relatively well by

solving the problem below:

ming( |V E| 4 |V F
+§ | RFG— V| 2

where p is a constant parameter and V.,V

stand for gradient operators respectively in horizontal
and vertical direction. The problem can be efficiently
solved by the split Bregman techniques[S].

CS still faces challenges of huge computational
complexity in reconstruction which hinders its
practical usage, not to mention real-time application.
Roughly speaking, its reconstruction complexity is
directly proportional to the spatial resolution. The
multi-resolution sensing matrix iS one approach to
alleviate this problem. By the way, CS at current
status has much space to improve in coding
efficiency when compared to conventional techniques
such as JPEG or MPEG-4". Tn addition to the coding
efficiency, additional desirable practical feature is
scalability functionality with which a transmitted
bitstream can be selectively (or adaptively) decoded
according to user’'s purpose or capability in picture
(spatial and temporal) resolution, quality, resource
status (energy, computation, etc), and so on. This
scalable coding framework allows clients to have
much freedom in decoding. In this paper, we are
particularly interested in having the CS support
scalability. Under the scalable

framework, one can first have fast preview of low

spatial spatially
resolution for real-time application and later higher
resolution as needed. The study in this paper
proposes a novel spatially scalable KCS sensing with
following contributions. Firstly, we introduce a
quincunx sensing matrix which not only enables
dual-resolution measurement but also improves final
performance of CS. Secondly, we propose a novel
two layer scalable framework: the low resolution base
layer and the high resolution enhancement layer. The

low-resolution image is obtained at encoder side and
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utilized for predictive coding. Thirdly, we jointly
reconstruct the high resolution image based on an
up-sampled version of the base layer image utilizing
post processing[m].

The rest of this paper is organized as follows.
Section II investigates some related work and
Section III introduces our scalable framework with
the proposed matrix. Numerical experiments are
presented in Section IV, and the paper is concluded

in Section V.

II. Related Work

1. Multi—resolution sensing matrix
Recently the problem of multi-resolution CS has
attracted high-level For
Baraniuk et al. proposed a dual scale sensing matrix
(DSS) in  CS-MUVI  framework"™

generate an efficiently computable low-resolution

of attention. example,

which can

video pre-view. To further reduce computational
complexity, Goldstein et al proposed a new
multi-resolution framework based on the STOne
transform. These algorithms were designed for a
single pixel camera imaging system[ls] in which the
elements of the sensing matrices are chosen as either
+1 or -1 to achieve easier and faster implementation.
Toward more general multiscale framework, the work
[13] proposed a multi-resolution sensing matrix for
Kronecker Compressive Sensing which focuses on
sampling low frequency component. However, they
measurement  without

only considered perfect

quantization, which is not practical.

2. Scalable compressive sensing of images
The problem of scalable compressive sensing has
[16~18] For

, Xiang et al. proposed to select a

also drawn much attraction
[16]

recently
scalable videocast
small portion of DCT coefficients in key frame
measurement to enable predictive coding. The hybrid

(9] they used does not support the so

[20]

sensing matrix

called, democracy property " of CS, so in terms of

St A LS Kronecker XY
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resilience to noise, it is slightly less attractive. By
the way, Jiang et al" used a multi-resolution
sensing matrix between each group of the same
resolution, so it can keep the democracy property
satisfied. The multi-resolution sensing matrix is
based on randomly permutated Walsh-Hadamard
matrix and it can provide multi-resolution CS
the scalable
However, it should be noted that no predictive coding
was used. Utilizing a dual resolution Sensing[m,

Valseia et al™ was able to obtain fast low

measurements  under framework.

resolution image and performed predictive coding at
both algorithms[]%m

designed for the single pixel camera system

decoder. However, were

1l

This paper develops a multi-resolution sensing
matrix and a novel spatially scalable framework for
Kronecker compressive sensing for still images. The
proposed method is not limited to binary sensing
and also take into account the

matrix can

quantization error.

III. Proposed Dual—Resolution Quincunx
Matrix

Even though the multi-resolution measurement is
desirable for enabling a fast preview of an
image/video, it however is supported neither by the
conventional CS™ %M por by KCS™. Tn order to
enable multi-resolution measurement, it is important
to study the relationship between the HR (high
resolution) and LR (low resolution) in measurement

domain. The KCS measurements of a same image at

low resolution, 7,, € R

2 and at a high resolution

Fyp C R™" can be expressed as:

Yip= RipFrrGrp (2)

Yiur = BupFurGur

Let’s assume that the LR image is a bi-linearly

down-sampled version of the HR image as follows:
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where the down-sampling operator is denoted by Dy
and simple up-sampling operator as a corresponding
up-sampling operator DST . Then a smoothed version

of F;p can be delivered by:
Fyp= Dy FrpDs = DST<DSF wrDg§ )Ds 4)

Let's further assume that the difference in (5)

between these two images is very small.
Fur— Far= Fgr— (DSTDS)F HR(DSTDS) )

Since CS

lemma (i.e., energy is preserved in the measurement
)[22]

satisfies the Johnson-Lindenstrauss

domain)““, subsequently it can be safely assumed
that the corresponding measurement residual in (6) is

also very small.
€= RHR(F HR ™ F—Hl?) Gur (6)

This assumption behind (5) is validated through
experiment using various resolutions and subrates as
shown in Fig. 1. We achieve SNR value around 22.8

24

2351
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measurement when the proposed HR matrix is applied to Lena image at resolution

dB and 255 dB for resolution 256x256 and 512x512,
Note that it is SNR of the CS
measurement not the one of the reconstructed image.
The SNR is calucualted as below:

I Yirll s J
I Yur— Yir ;

respectively.

SNR = 1010g10(

When the HR subrate equals to 0.25, the recovered
LR image achieves very high PSNR value as in Fig

2. It is because the subrate of LR image is exactly 1.
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PSNR performance of recovered LR image
using with the proposed matrix for HR image of
size (512x512) at subrate 0.25.
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256x256 (left) and at 512x512 (right) (It shows average values over 20 different random matrices).
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For lower subrate than 0.25, we also expected high
PSNR performance for LR image since it is sensed at
four times subrate than the HR one. In addition, it is
worthwhile mentioning that our algorithm offers even
better performance as the image resolution increases.
Beside, the higher subrate gives the more stable SNR
performance.

With this error, we can interpret the LR

compressed measurement via Fj, image as:

Yir= RHR(TIH%+ (F HR ™ Tm%)) Gur 7)

= RHR(FHR) Gur+ RHR(FHR - F—Hl?) Gur

From (7), the LR measurement can be drawn from
the HR measurement by enforcing the following

constraint:

RHIZ(F—HR) Gur= RiplrrGrr ¢))

YLR: YHR+€

To achieve this goal, we propose a new sensing
matrix based on the quincunx sampling grid. After
constructing a low resolution sensing matrix R p, its
values are then mapped to the high resolution
sensing matrix R—HR with the quincunx grid as
llustrated in Fig. 4. By doing so, we actually sense
LR image at quincunx grid with fully random
sensing matrix R;p. Therefore, we guarantee the

RIP condition of LR image. In another hand, the

0.012
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The proposed guincunx sensing matrix.

acquisition using the proposed matrix is equivalent to
following two step sampling approach: (1) extract the
LR image using the quincunx down-sampling pattern,
(2) compress sensing this LR image using the
random R;, matrix. Therefore, the RIP of HR
sensing matrix is also guaranteed considering that
we actually sense the HR image at quincunx sample
locations. However, it is expected to lose some details
of image. By using the proposed quincunx dual
resolution sensing matrix to sense HR image, both
LR and HR images can be reconstructed with the
same set of measurements. Therefore, if the target
subrate of HR image is r, then we can construct the
proposed sensing matrix R, from the LR sensing
matrix R;p at subrate r>x4. As a result, the
proposed sensing matrix Ry, prefers a subrate
smaller than 0.25, otherwise the subrate of LR will
exceed 1. However, rather than discarding all high
frequency components as in [13] (e, the authors

actually sample the low resolution image only), the

[ Histogram

i Est. Gaussian dist.
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Q
Q
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proposed sensing matrix tends to preserve the image
texture better. But, it comes with a cost of noise in
low resolution image. Since the LR image is obtained
at much higher subrate than HR image, we can
easily get rid of LR measurement noise especially by
utilizing the state of the art denoising algorithm like
BM3D"

IV. Proposed Spatially Scalable KCS

1. Compressed sensing and encoding

The detaill of the proposed spatially scalable
scheme is explained here by referring to Fig. 5. The
sensing part senses an input image at two spatial
resolutions: LR image for base layer and HR image

for enhancement layer using respectively

n

(R®.G"c R"" ?) and (R,G"C R™"). The
proposed framework, therefore, support three image
resolutions: n/4xn/4 and n/2xn/2 with base
layer and n xXn with enhanced layer. In case of the
base layer, we use the proposed quincunx sensing
matrix at subrate 025 for LR image of size
n/2xn/2.

The enhanced layer is sensed at

Baszelayer |
|

=» RE GF

> R%,G" i>| ¢ —ic }—>

_,I
— > (!

[Channel

resolution nxn. The base layer is sensed at resolution
/2 x 1n/2. Therefore, the LR image that we can
reconstruct from base layer is n/4 x n/4. This

quincunx matrix is constructed from the lower

n
< X
4

. . My
resolution matrix R, GF, C R at a subrate

1.0. Therefore, we can enable fast preview the lower

resolution image of size ZX ) by a simple inverse
processing:.

B B\ 1B ~B\ 1

Fip=Rix) ' Y(GLR) 9)

where Y? is de-quantized measurement of the base
layer. The recovered image is obtained at a high
quality with very high SNR. For the enhancement
layer, the HR image is sensed by the conventional
KCS sensing matrix RE.GPCc R

Inspired by [10], we also up-sample the low

mgXn

resolution image F7, to predict the high resolution

image Fp.,, and re-sample to deliver predictive

measurement Y., = RE(FPEred)GE.

we perform uniform quantization followed by

Subsequently,

Huffman entropy coding for measurement data of the

h 4

1l

| 1) v

Trrre rse Fost.
BIV=D
L 4

UpSarmple || Up Sample

Decoder

(Q,Q '& TUAXRIst Y Axtsto|l, ¢ 0 'L

Proposed spatially scalable KCS framework (here @, Q' refer to uniform quantizer and
dequantizer, C,C"~ ! refer to Huffman entropy coder and decoder, respectively).

(1843)
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base layer Y?” and the enhancement layer
vE-vE .

From out experiment, we note that, the KCS

measurement does not follow Gaussian distribution as
conventional CS measurement as [11] but
Laplacian distribution. In addition, the KCS residual

measurement follows Laplacian distribution. Fig. 3

in

shows experimental results to see how well the
Laplacian & Gaussian distributions fit with real data.
It shows that KCS measurement and residual
measurement match pretty well respectively with
and Gaussian distribution.

Laplacian Therefore,

depending on the type KCS measurement, its
corresponding  distribution is selected for use in
Huffman encoding process. The base layer is always
available to decoder, while the additional bitstream of

enhanced layer is sent only upon receiver request.

2. Decoding and compressed sensing recovery
As an inverse processing to the compressed
sensing, we first carry out the huffman decoding and
dequantize the received bitstream for both the base
and enhanced layers (if available). Decoder will
reconstruct the LR image from the base layer then
HR image as necessarily. Because HR and LR image
sensing is designed to share the same measurements,
reconstructing the HR and LR images can use the

TV straightforwardly without modification. On the

= 1

Table 1.

Fxal gmaFol diet s 2=

Description of post processing algorithm[w].

Input: Initial image FO, measurement Y,
sensing matrices R, G

Output: image Fi™!
Estimate image: 7= BM3D(F°),i =0

While 7 < 10 ,(ssim”l — ssim')< &
YV..=Y—RF.G
F'..=TVrec(Y.. ,R,G)
A= Rt F,

Fi™'= BM3D(Fi™)
ssim' "' = SSIM(F{™ ', FL)
i=i+1,

End

a7t AAH Y2 Kronecker HXIY
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Table 2. Description of various CS methods.

Algorithm Descriptions

Single layer by TV recovery

SQ-TV-w/BM3D | T BNEBD post processing

Single layer by TV recovery

SQ-TV-w/oBM3D | without BM3D post

processing
MR-KCS %g&ﬁ;ﬁ;;?olution sensing
propoed | s sl sl
other hand, in this paper, the LR image is

reconstructed first from the measurements using the
sensing matrices and the super resolution/upsampling
technique, such as bi—cubic interpolation[m]. We utilize
this upsampling technique to generate the predicted

HR image from preview LR image.

Because both LR and HR images contain
significant staircase artifacts, BM3D filtering as
post—processing[m] i1s applied to alleviate this

drawback. Due to the structure preservation of the
state of the art denoising filter - BM3D, we can
suppress the staircase artifact by iterative filtering of
image and reconstructing the residual measurement.
Details of the algorithm are in Table 1 where the
BM3D(.) stands for a filtering operator with BM3D
algorithm”,  TVrec(Y, R, G) v

reconstruction with input measurement Y and sensing

denotes

matrix R, G. SSIM() represents the structural
similarity SSIM™ metric  which is used as the
stopping criterion because the aim is to preserve the
nonlocal The two BMS3D processes
depicted in Fig. 5 are identical.

structures.

V. Experiment and Discussion

1. Experimental conditions

In this section we compare the proposed method
with the conventional single layer framework'”
with/without BM3D post processing and the multi

resolution sensing framework of MS-KCS™! For the
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single layer and MR-KCS approaches, we follow the
original framework with suggested parameters. In
case of the proposed method, the base layer is sensed
at subrate 0.25 with the proposed sensing matrix to
deliver low resolution image at encoder side.
Enhancement layer is sampled at various subrates
using conventional KCS Gaussian sensing matrix. A
simple bi—cubic interpolation method is used to
deliver predicted HR images.

For measurement coding, uniform quantization
followed by Huffman coding is used for both spatial
with

distribution as mentioned in Section |l|. The best

and residual KCS measurement selected
combination of quantization bit depth is selected to
offer the best performance. For the proposed method,
bit depth of 6 bits or 4 bits are used for base layer
and  residual/enhancement layer = measurement,
respectively.

In receiver side, TV reconstruction is used with

the same parameters for all algorithms and stopping
criteria of (| 7% 1— #%12/ 1| 1 2)< 2,107 %, For
post processing, BM3D is used with =10 and
SSIM threshold of 0.002. All results are obtained by
averaging five simulations with test images of size
512x512 at various subrates to obtain bitrate from 0.6

to 2.4 bbp. All test images are presented in Fig. 6.

512x512 | M2l E|AE A4
Various gray test images of size 512x512.

gl
Fig.

(1845)
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2. Experimental results

In order to evaluate performance of the proposed
quincunx sensing matrix, we compare its performance
with that of the conventional KCS sensing matrix,
and its result is given in Table 3. In comparison with
the conventional sensing matrix, it is not only able to
LR image reconstruction but also can

HR An
improvement of 0.3 to 1.3 dB can be achieved by

provide
improve reconstruction  performance.
using the proposed sensing matrix. Thanks to the
quincunx sampling scheme, we are able not to lose
any high frequency component and even have gain in
case of images having much edgeness. For instance,
the proposed matrix offers 0.3dB gain on average on
Barbara image.

Two single layer framework SQ-TV with and
without BM3D post processing and the previous dual
resolution images MR-KCS™ are compared with the
proposed two layers scalable method as well. Their
rate distortion performances are depicted in Fig. 7 in
BM3D post

almost 2dB gain on average over

which we can observe that the
processing gives
the conventional case. Surprisingly, the previous work
MR-KCS does not show high performance as
13 most likely due to
presence of quantization noise. It offers limited
perofrmance at high subrate while slightly better

low bitrate

presented in the original paper

performance than other frameworks at

Z 3 Hetst= quincunx 2 71E KCS #@#E ZH TV
29 o721z oMol M5 @ (PSNR: dB)
Table 3. Experimental result  comparison  of e
reconstruction with the proposed quincunx and
the conventional KCS matrix (PSNR: dB).
Image Subrate | 0.05 0.10 0.15 0.20 0.25
Lena TVI3] 2558 2819 2984 3116 3226
TV[3]« | 2594 2884 3062 3205 3328
Barbars TVI3] 2106 2239 2323 2394 2467
TV[3]x | 21.28 2268 2354 2429 2504
Peppers TVI3] 2531 2824 2985 30.97 31.86
TVI3lx | 2569 2877 3043 31.63 32.71
Camera  TVI3] 2540 2858  30.79 32.47 3391
~man TV[3]« | 2576 2930 3169 3359 3529

(%): using the proposed sensing matrix
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Fig. 7. Rate distortion curves of various algorithms for several test images.

below 0.8 bbp. At a high bit rate, MR-KCS's
performance is even lower than the single layer with
BM3D post processing.

Thanks to the proposed two layer concept and
proposed dual resolution sensing matrix, the proposed
method,
resolution reconstructions but also give the best
algorithms It

outperforms the single layer framework irrespective

is not only able to produce different

performance  among compared.
of with and without BM3D post processing (up to 8
dB and 5 dB gain at bit rate of 2.33 bpp of Barbara
image, respectively). In comparison with MR-KCS, it

gains up to by 82 dB at 2.0 bpp for Barbara image.

(1846)

3. Further discussion

This paper is the first work addressing the
scalable problem of Kronecker compressive sensing
while the other all
block-based CS or binary sensing matrix. So that we
the

multi-resolution sensing matrix and single layer

existing ones are about

only compared with previous works on
scheme. Beside, it is possible to extend the proposed
framework to other sensing matrix with only little
modification on the base layer. We should change the
quincunx sampling matrix suitable to the conventional
sampling. Despite of the significant improvement of

in coding efficiency, the two layered framework has
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to face some limitation. We could sense different
image resolutions with the same size sensing matrix
(see [13]). However, it requires sampling two times
for sensing two different resolutions of base and
Thus,

prefers the static scene. This limitation can overcome

enhanced layer. the proposed framework
for video application. For instance, we use base layer

for key—-frame only.

VI. Conclusion

In this paper, a dual resolution sensing matrix
based on quincunx sampling grid and a spatially
scalable Kronecker sensing framework (dual layer
design) are proposed, The proposed method enables
fast preview image and using predictive coding in the
encoder side. HR image is recovered by jointly
and further

enhancement by BM3D post processing. This work

reconstructing  HR and LR images,

does consider quantization error with uniform

quantization. Our method also offers remarkable
improvement over the conventional single layer and

multi-resolution scheme in terms of coding efficiency.
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