• Title/Summary/Keyword: Resistive random-access memory

Search Result 55, Processing Time 0.026 seconds

Field-induced Resistive Switching in Ge-Se Based ReRAM

  • Lee, Gyu-Jin;Eom, Jun-Gyeong;Jeong, Ji-Su;Jang, Hye-Jeong;Kim, Jang-Han;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.342-342
    • /
    • 2012
  • Resistance-change Random Access Memory (ReRAM), which utilizes electrochemical control of nanoscale quantities of metal in thin films of solid electrolyte, shows great promise as a future solid state memory. The technology utilizes the electrochemical formation and removal of metallic pathways in thin films of solid electrolyte. Key attributes are low voltage and current operation, excellent scalability, and a simple fabrication sequence. In this study, we investigated the nature of thin films formed by photo doping of Ag+ ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We measured the I-V characteristics by field-effect of the device. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from chalcogenide materials.

  • PDF

A CMOS Macro-Model for MRAM cell based on 2T2R Structure (2-Transistor와 2-Resister 구조의 MRAM cell을 위한 CMOS Macro-Model)

  • 조충현;고주현;김대정;민경식;김동명
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.863-866
    • /
    • 2003
  • Recently, there has been growing interests in the magneto-resistive random access memory (MRAM) because of its great potential as a future nonvolatile memory. In this paper, a CMOS macro-model for MRAM cell based on a twin cell structure is proposed. The READ and WRITE operations of the MTJ cell can be emulated by adopting data latch and switch blocks. The behavior of the circuit is confirmed by HSPICE simulations in a 0.35-${\mu}{\textrm}{m}$ CMOS process. We expect the macro model can be utilized to develope the core architecture and the peripheral circuitry. It can also be used for the characterization and the direction of the real MTJ cells.

  • PDF

Interfacial Magnetic Anisotropy of Co90Zr10 on Pt Layer

  • Gil, Jun-Pyo;Seo, Dong-Ik;Bae, Gi-Yeol;Park, Wan-Jun;Choe, Won-Jun;No, Jae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.356.2-356.2
    • /
    • 2014
  • Spin Transfer Torque (STT) is of great interest in data writing scheme for the Magneto-resistive Random Access Memory (MRAM) using Magnetic Tunnel Junction (MTJ). Scalability for high density memory requires ferromagnetic electrodes having the perpendicular magnetic easy axis. We investigated CoZr as the ferromagnetic electrode. It is observed that interfacial magnetic anisotropy is preferred perpendicular to the plane with thickness dependence on the interfaces with Pt layer. The anisotropy energy (Ku) with thickness dependence shows a change of magnetic-easy-axis direction from perpendicular to in-plane around 1.2 nm of CoZr. The interfacial anisotropy (Ki) as the directly related parameters to switching and thermal stability, are estimated as $1.64erg/cm^2$ from CoZr/Pt multilayered system.

  • PDF

A New Reference Cell for 1T-1MTJ MRAM

  • Lee, S.Y.;Kim, H.J.;Lee, S.J.;Shin, H.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.110-116
    • /
    • 2004
  • We propose a novel sensing scheme, which operates by sensing the difference in voltage between a memory cell and a reference cell for a magneto-resistive random access memory (MRAM). A new midpoint-reference generation circuit is adopted for the reference cell to improve the sensing margin and to guarantee correct operation of sensing circuit for wide range of tunnel magneto resistance (TMR) voltages. In this scheme, the output voltage of the reference cell becomes nearly the midpoint between the cell voltages of high and low states even if the voltage across the magnetic tunnel junction (MTJ) varies.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

A Study of the Electrical Characteristics of WOx Material for Non-Volatile Resistive Random Access Memory (비-휘발성 저항 변화 메모리 응용을 위한 WOx 물질의 전기적 특성 연구)

  • Jung, Kyun Ho;Kim, Kyong Min;Song, Seung Gon;Park, Yun Sun;Park, Kyoung Wan;Sok, Jung Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.268-273
    • /
    • 2016
  • In this study, we observed current-voltage characteristics of the MIM (metal-insulator-metal) structure. The $WO_x$ material was used between metal electrodes as the oxide insulator. The structure of the $Al/WO_x/TiN$ shows bipolar resistive switching and the operating direction of the resistive switching is clockwise, which means set at negative voltage and reset at positive voltage. The set process from HRS (high resistance state) to LRS (low resistance state) occurred at -2.6V. The reset process from LRS to HRS occurred at 2.78V. The on/off current ratio was about 10 and resistive switching was performed for 5 cycles in the endurance characteristics. With consecutive switching cycles, the stable $V_{set}$ and $V_{reset}$ were observed. The electrical transport mechanism of the device was based on the migration of oxygen ions and the current-voltage curve is following (Ohm's Law ${\rightarrow}$ Trap-Controlled Space Charge Limited Current ${\rightarrow}$ Ohm's Law) process in the positive voltage region.

Convergence Study on Fabrication and Plasma Module Process Technology of ReRAM Device for Neuromorphic Based (뉴로모픽 기반의 저항 변화 메모리 소자 제작 및 플라즈마 모듈 적용 공정기술에 관한 융합 연구)

  • Kim, Geunho;Shin, Dongkyun;Lee, Dong-Ju;Kim, Eundo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.1-7
    • /
    • 2020
  • The manufacturing process of the resistive variable memory device, which is the based of neuromorphic device, maintained the continuity of vacuum process and applied plasma module suitable for the production of the ReRAM(resistive random access memory) and process technology for the neuromorphic computing, which ensures high integrated and high reliability. The ReRAM device of the oxide thin-film applied to the plasma module was fabricated, and research to improve the properties of the device was conducted through various experiments through changes in materials and process methods. ReRAM device based on TiO2/TiOx of oxide thin-film using plasma module was completed. Crystallinity measured by XRD rutile, HRS:LRS current value is 2.99 × 103 ratio or higher, driving voltage was measured using a semiconductor parameter, and it was confirmed that it can be driven at low voltage of 0.3 V or less. It was possible to fabricate a neuromorphic ReRAM device using oxygen gas in a previously developed plasma module, and TiOx thin-films were deposited to confirm performance.

a-IGZO 박막을 적용한 저항메모리소자의 단 극성 스위칭 특성 평가

  • Gang, Yun-Hui;Mun, Gyeong-Ju;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.78.1-78.1
    • /
    • 2012
  • 비 휘발성 저항 메모리소자인 resistance random access memory (ReRAM)는 빠른 동작특성과 저 전압 특성을 나타내고 비교적 간단한 소자구조로 고집적화에 유리하여 기존의 DRAM과 flash 메모리, SRAM 등이 갖고 있는 한계를 극복할 수 있는 차세대 메모리소자로써 각광받고 있다. 현재, 이성분계 산화물, 페로브스카이트 산화물, 고체 전해질 물질, 유기재료 등을 응용한 저항 메모리소자에 대한 연구가 활발히 진행되고 있다. 그 중 ZnO 를 기반으로 하는 amorphous InGaZnO (a-IGZO) 박막은 저온에서 대면적 증착이 가능하며 다른 비정질 재료에 비해 높은 전하 이동도를 갖기 때문에 박막트랜지스터 적용 시 우수한 전기적 특성을 나타낸다. 또한 빠른 동작특성과 높은 저항 변화율을 보이기 때문에 ReRAM에 응용 가능한 재료로써 기대되고 있다. 본 연구에서는 MOM(metal/oxide/metal) 구조를 기반한 TiN/a-IGZO/ITO 구조의 소자를 제작하여 저항 메모리 특성을 평가하였다. IGZO 박막은 radio frequency (RF) sputter 를 이용하여 ITO/glass 기판 위에 증착하였다. MOM 구조를 위한 상부 TiN 전극은 e-beam evaporation 을 이용하여 증착하였다. 제작된 저항 메모리소자는 안정적인 unipolar resistive switching 특성을 나타내었으며, TiN 상부전극과 IGZO 계면 간의 Transmission Electron Microscopy (TEM) 분석을 통해 전압 인가 후 전극 금속 물질의 박막 내 삽입으로 인한 금속 필라멘트의 형성을 관찰 할 수 있었다. 합성된 박막의 형태와 결정성은 Scanning electron microscope (SEM)와 X-ray Diffraction (XRD)을 통해 평가 하였으며, 제작된 소자의 전기적 특성은 HP-4145 를 이용하여 측정하고 비교 분석하였다.

  • PDF

Memristors based on Al2O3/HfOx for Switching Layer Using Single-Walled Carbon Nanotubes (단일 벽 탄소 나노 튜브를 이용한 스위칭 레이어 Al2O3/HfOx 기반의 멤리스터)

  • DongJun, Jang;Min-Woo, Kwon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.633-638
    • /
    • 2022
  • Rencently, neuromorphic systems of spiking neural networks (SNNs) that imitate the human brain have attracted attention. Neuromorphic technology has the advantage of high speed and low power consumption in cognitive applications and processing. Resistive random-access memory (RRAM) for SNNs are the most efficient structure for parallel calculation and perform the gradual switching operation of spike-timing-dependent plasticity (STDP). RRAM as synaptic device operation has low-power processing and expresses various memory states. However, the integration of RRAM device causes high switching voltage and current, resulting in high power consumption. To reduce the operation voltage of the RRAM, it is important to develop new materials of the switching layer and metal electrode. This study suggested a optimized new structure that is the Metal/Al2O3/HfOx/SWCNTs/N+silicon (MOCS) with single-walled carbon nanotubes (SWCNTs), which have excellent electrical and mechanical properties in order to lower the switching voltage. Therefore, we show an improvement in the gradual switching behavior and low-power I/V curve of SWCNTs-based memristors.

A New Sensing and Writing Scheme for MRAM (MRAM을 위한 새로운 데이터 감지 기법과 writing 기법)

  • 고주현;조충현;김대정;민경식;김동명
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.815-818
    • /
    • 2003
  • New sensing and writing schemes for a magneto-resistive random access memory (MRAM) with a twin cell structure are proposed. In order to enhance the cell reliability, a scheme of the low voltage precharge is employed to keep the magneto resistance (MR) ratio constant. Moreover, a common gate amplifier is utilized to provide sufficient voltage signal to the bit line sense amplifiers under the small MR ratio structures. To enhance the writing reliability, a current mode technique with tri-state current drivers is adopted. During write operations, the bit and /bit lines are connected. And 'HIGH' or 'LOW' data is determined in terms of the current direction flowing through the MTJ cell. With the viewpoint of the improved reliability of the cell behavior and sensing margin, HSPICE simulations proved the validity of the proposed schemes.

  • PDF