• Title/Summary/Keyword: Resistant Genes

Search Result 844, Processing Time 0.031 seconds

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

Evaluation of horizontal gene transfer from genetically modified zoysiagrass to the indigenous microorganisms in isolated GMO field (GMO 격리포장에서의 유전자변형 들잔디로부터 토착미생물로의 수평유전자전달 평가)

  • Bae, Tae-Wung;Lee, Hyo-Yeon;Ryu, Ki-Hyun;Lee, Tae-Hyeong;Lim, Pyung-Ok;Yoon, Pill-Yong;Park, Sin-Young;Riu, Key-Zung;Song, Pill-Soon;Lee, Yong-Eok
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.75-80
    • /
    • 2007
  • The release of genetically modified organisms ($GMO_{s}$) into the environment has the potential risks regarding the possibility of gene transfer from $GMO_{s}$ to natural organisms and this needs to be evaluated. This study was conducted to monitor the possible horizontal gene transfer from herbicide-resistant zoysiagrass (Zoysia japonica Steud.) to indigenous microorganisms. We have first examined the effect of field-released GM zoysiagrass on the microbial flora in the gut of locust (Locusts mlgratoria). The microbial flora was analyzed through determining the 165 rDHA sequences of microorganisms. The comparison of the microbial flora in the gut of locusts that were captured at the field of GM zoysiagrass and of wild-type revealed that there is no noticeable difference between these two groups. This result indicates that the GM zoysiagrass does not have negative impact on microbial flora in the gut of locust. We then investigated whether the horizontal gene transfer occurred from GM zoysiagrass to microbes in soil, rhizosphere and faecal pellets from locusts by utilizing molecular tools such as Southern hybridization and polymerase chain reaction (PCR). When the total DNAs isolated from microbes in GM zoysiagrass and in wild-type zoysiagrass fields were hybridized with probes for bar or hpt gene, no hybridization signal was detected from both field isolates, while the probes were hybridized with DNA from the positive control. Absence of these genes in the FNAs of soil microorganisms as well as microbes in the gut of locust was further confirmed by PCR. Taken together, our data showed that horizontal gene transfer did not occur in this system. These results further indicate that frequencies of transfer of engineered plant DNA to bacteria are likely to be negligible.

Association Between Single Nucleotide Polymorphisms in miRNA196a-2 and miRNA146a and Susceptibility to Hepatocellular Carcinoma in a Chinese Population

  • Zhang, Jun;Wang, Rui;Ma, Yan-Yun;Chen, Lin-Qi;Jin, Bo-Han;Yu, Hua;Wang, Jiu-Cun;Gao, Chun-Fang;Liu, Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6427-6431
    • /
    • 2013
  • Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in the world and deeply threatens people's health, especially in China. Techniques of early diagnosis, prevention and prediction are still being discovered, among which the approaches based on single nucleotide polymorphisms in microRNA genes (miRNA SNPs) are newly proposed and show prospective potential. In particular, the association between SNPs in miRNA196a-2 (rs11614913) and miRNA146a (rs2910164) and HCC has been investigated. However, the conclusions made were conflicting, possibly due to insufficient sample size or population stratification. Further confirmations in well-designed large samples are still required. In this study, we verified the association between these two SNPs and the susceptibility to HCC by MassARRAY assay in a 2,000 large Chinese case-control sample. Significant association between rs11614913 and HCC was confirmed. Subjects with the genotype of CT+TT or T allele in rs11614913 were more resistant to HCC (CT+TT: OR (95% CI)=0.73 (0.57-0.92), P=0.01; T allele: OR (95% CI)=0.85 (0.75-0.97), P=0.02) and HBV-related HCC (CT+TT: OR (95% CI)=0.69 (0.53-0.90), P=0.01; T allele: OR (95% CI)=0.82 (0.71-0.95), P=0.01). The affected carriers of CT or TT also tended to have lower levels of serum AFP (P=0.01). This study demonstrated a role of rs11614913 in the etiology of HCC. Further research should focus on the clinical use of this miRNA SNP, so as to facilitate conquering HCC.

Screening of Tomato Spotted Wilt Virus Resistance in Tomato Accessions (토마토반점위조바이러스(TSWV) 저항성 토마토 유전자원 탐색)

  • Han, Jung-Heon;Choi, Hak-Soon;Lee, Jun-Dae;Kim, Jae-Deok;Lee, Won-Phil;Choi, Hong-Soo;Kim, Jung-Soo;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • A total of 94 tomato accessions were evaluated for the resistance to $Tomato$ $spotted$ $wilt$ $virus$ (TSWV) using a Sw5-2 SCAR marker and bioassay. PCR products of the marker were approximately 574 bp, 500 bp, and 462 bp, among which the longest was linked to TSWV resistance allele of Sw5-b. This allele was only found in three accessions (09-438, 10-318, and 10-321) in which some individuals showed apparent recovery or stem necrosis symptom to a tomato isolate of TSWV-pb1. Thirty-five individuals (one per each accession) which were non-infected by ELISA were selected for further observation. Among these, 26 individuals that did not show any symptom at 5 months after inoculation were confirmed for viral infection by RT-PCR. TSWV-specific PCR amplicon was weakly detected in all 26 individuals including 'Eureta', a commercial F1 possessing the resistance allele of Sw5-b. The resistant genes in the selected individuals may play an important role for reducing the viral concentration in tissues of inoculated tomato plants and seems to be quantitatively controlled by several factors including Sw5-b gene.

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

Characterization, detection and identification of transgenic chili pepper harboring coat protein gene that enhances resistance to cucumber mosaic virus

  • Seo, Sang-Gyu;Kim, Ji-Seong;Jeon, Seo-Bum;Shin, Mi-Rae;Kang, Seung-Won;Lee, Gung-Pyo;Hong, Jin-Sung;Harn, Chee-Hark;Ryu, Ki-Hyun;Park, Tae-Sung;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.384-391
    • /
    • 2009
  • Previously, two events (H15 and B20) of transgenic pepper (Capsicum annuum L.) that enhanced resistance to Cucumber mosaic virus (CMV) by the introduction of CMV coat protein (CP) gene were constructed. Presently, a single copy number of the CP gene was revealed in H15 and B20 by Southern blot. To predict possible unintended effects due to transgene insertion in an endogenous gene, we carried out sequencing of the 5'-flanking region of the CP gene and a Blastbased search. The results revealed that insertion of the transgene into genes encoding putative proteins may occur in the H15 and B20 transgenic event. Mutiplex polymerase chain reaction (PCR) for simultaneous detection and identification of transgenic pepper was conducted with a set of nine primers. Both transgenic event were differentiated from non-transgenic event by the presence of 267 bp and 430 bp PCR products indicative of CP gene specific primer pairs and primer pairs targeting the CP gene and 35S promoter. H15 and B20 uniquely possessed a 390 bp and 596 bp PCR product, respectively. The presence of a 1115 bp product corresponding to intrinsic pepper actin gene confirmed the use of pepper DNA as the PCR template. The primer set and PCR conditions used presently may allow the accurate and simple identification of CMV resistant transgenic pepper.

The Effect of the Transcriptional Regulation of Sp1 for TGF-β1 and CTGF Expression in Scar Formation (반흔형성 과정에서 Sp1 전사인자 조절에 의한 TGF-β1 및 CTGF의 발현)

  • Park, Dong Man;Sohn, Dae Gu;Han, Ki Hwan;Lee, Sun Young;Chae, Young Mi;Chang, Young Chae;Park, Kwan Kyu
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.39-45
    • /
    • 2006
  • This study is to examine the relationship between TGF-b1 expression and CTGF expression, and to evaluate the effect of Sp1 blockade on the expression of TGF-b1, CTGF and extracellular genes, clones of fibroblasts stably transfected with Sp1 decoy ODN. R-Sp1 decoy ODN was highly resistant to degradation by nucleases or serum, compared to the linear or phosphorothioated-Sp1 decoy ODN. Skin wounds were created on the back of 36 anesthetized rats. They were divided into four groups-the rats with normal skin, with wounded skin without decoy, with wounded skin injected with R-Sp1 decoy, and with wounded skin injected with mismatched R-Sp1 decoy, respectively. Skins were collected at 3rd, 5th, 7th, 14th day after wounding. Cellular RNA was extracted by RT-PCR analysis. TGF-${\beta}1$ and CTGF were deeply related with skin fibrosis during scar formation and it appeared that TGF-${\beta}1$ may cause the induction of CTGF expression. R-Sp1 decoy ODN inhibited TGF-${\beta}1$ and CTGF expression both in cultured fibroblasts and in the skin of rats. These results indicate that targeting Sp1 with R-type decoy efficiently blocks extracellular matrix gene expression, and suggest an important new therapeutic approach to control the scarring in normal wound healing and fibrotic disorders.

Characterization of Plasmid-Mediated SHV-11 β-lactamase Gene of Klebsiella pneumoniae Isolated from the Clinical Specimens (임상검체로부터 분리한 플라스미드 매개성 SHV-11 β-lactamase 유전자의 특성)

  • Kim, Yun-Tae;Lee, Sang-Hoo;Jang, Ji-Hyun;Kim, Tae-Un;Choi, Seok-Cheol;Baik, Hyung-Suk;Lee, Kyoung-Ryul;Yoon, Hye-Ryoung;Kim, Young-Jin
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1718-1723
    • /
    • 2009
  • In this study, we characterized extended-spectrum $\beta$-lactamase (ESBL)-producing Enterobacteriaceae isolated from clinical specimens in Korea and found two strains harboring plasmid-mediated $bla_{SHV-11}$, Klebsiella pneumoniae. First, the isolates were detected using the Vitek system and confirmed by the double-disk synergy test. The classification of gene coding for ESBL was also performed by polymerase chain reactions and followed by DNA sequencing. The transmission of genes was confirmed by transconjugation and transformation. Resistant expression of transformants was determined by broth microdilution minimal inhibitory concentration test. Genotypic analysis revealed that one strain harbored the $bla_{TEM-1}$, $bla_{SHV-11}$ and $bla_{CTX-M-15}$ and the other strain harbored the $bla_{SHV-11}$ and $bla_{CTX-M-15}$. They showed high resistance to oxyiminocephalosphorins (3rd-generation cephalosporins), while the transformant containing only $bla_{SHV-11}$ did not show any resistance to the antibiotics.

A Three-year Survey on Korean Consumer's Awareness, Perception and Attitudes toward Genetically-modified Foods; Years 2000-2002 (유전자재조합식품의 인지도 및 수용도에 대한 연차별 비교)

  • Kim, Myung-Hee;Kim, Jay-Wook;Chae, Kyung-Yeon;Park, Se-Won;Kim, Youn-Soon;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1155-1161
    • /
    • 2003
  • A three-year (2000-2002) survey on consumer's awareness and perception of genetically-modified (GM) foods was conducted on random samples of Korean consumers. More than 65% of the respondents were exposed to some information related to GM foods. The greatest benefit of the development of GM foods was thought to be their remedy of potential food shortages in the future. More than 90% of Korean consumers wanted GM foods to be labeled. About 18% of the respondents would buy GM foods voluntarily, whereas over 46% would not until they knew more about the product. Only 39% of Korean consumers were found to have realized that food items origination from plants contained genes. More consumers responded that they would not buy herbicide-resistant GM soybean and buy vitamin-enriched GM soybean instead. Many Korean consumers appeared to make decisions of acceptance or rejection of GM foods not on the basis of biotechnology, but on the basis of the word(s) used to describe the products, such as herbicide and vitamin. Only 4% of Korean consumers responded that GM foods were the greatest threat to the safety of Korean foods.