Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways |
Lee, Mi-Ock
(School of Biological Sciences, College of Natural Sciences, Seoul National University)
Song, Ki-Hong (School of Biological Sciences, College of Natural Sciences, Seoul National University) Lee, Hyun-Kyung (School of Biological Sciences, College of Natural Sciences, Seoul National University) Jung, Ji-Yoon (School of Biological Sciences, College of Natural Sciences, Seoul National University) Choe, Vit-Nary (School of Biological Sciences, College of Natural Sciences, Seoul National University) Choe, Sung-Hwa (School of Biological Sciences, College of Natural Sciences, Seoul National University) |
1 | Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231-243 DOI ScienceOn |
2 | Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE.Feldmann KA (1999a) The Arabidopsis dwarfl mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol 119:897-907 DOI ScienceOn |
3 | Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573-582 DOI ScienceOn |
4 | Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE. Feldmann KA (1999b) The Arabtdopsis dwf7/stel mutant is defective in the sterol C-5 desaturation step leading to brassinosteroid biosynthesis. PIant Cell 11:207-221 |
5 | Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA (2000) Lesions in the sterol reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21:431-443 DOI ScienceOn |
6 | Grove MD, Spencer FG, Rohwedder WK, Mandava NB, Worley JF Jr JDW, Steffens GL, Flippen-Anderson JL Jr JCC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216-217 DOI ScienceOn |
7 | Kamuro Y, Takatsuto S (1999) Practical application of brassinosteroids in agricultural fields. In: Brassinosteroids: Steroidal Plant Hormones. Sakurai A, Yokota T, Clouse SD, (eds). Tokyo, Spiinger Verlag, pp. 163-190 |
8 | Katsumi M (1985) Interaction of a brassinosteroid with lAA and GA3 in the elongation of cucumber hypocotyl sections. Plant Cell Physiol 26:615-625 DOI |
9 | Mandava NB (1988) Plant growth-promoting brassinosteroids. Ann. Rev. Plant Physiol. Plant Mol Biol 39:23-52 DOI ScienceOn |
10 | Li J, Nagpal P, Vatart V, McMorris TC, Choiy J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398-401 DOI ScienceOn |
11 | Miettinen TA, Tilvis RS, Kesaniemi YA (1990) Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am J Epidemiol 131:20-31 DOI |
12 | Mitchll JD, Gregory LE (1972) Enhancement of overall growth, a new response to brassins. Nature 239:254 |
13 | Arteca RN, Bachman JM, Mandava NB (1988) Effects of indo1e-3- acetic acid and brassinosteroid on ethylene biosynthesis in etiolated mung bean hypocotyl segments. J Plant Physiol 133:430-435 DOI |
14 | Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10:219-230 DOI ScienceOn |
15 | Brummell DA, Hall JL (1985) The role of cell wall synthesis in sustained auxin-induced growth. Physiol Plant 63:406-412 DOI |
16 | Paquette SM, Bak S, Feyereisen R (2000) Intron-exon organization and phytogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabtdopsis thaliana. DNA Cell Biol 19:307-317 DOI ScienceOn |
17 | Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171-182 DOI ScienceOn |
18 | Yopp JH, Mandava NB, Sasse JM (1981) Brassinolide, a growth- promoting steroidal lactone. I. Activity in selected auxin bioassays. Physiol Plant 53:445-452 DOI |
19 | Takeno K, Pharis RP (1982) Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: an auxin-mediated phenomenon. Plant Cell Physiol 23:1275-1281 DOI |
20 | Yokota T, Ogino, Y, Suzuki H, Takahashi N., Saimoto H, Fujioka S, Sakurai A (1991) Metabolism and biosynthesis of brassinosteroids. In Brassinosteroids: Chemistry, Bioactivity, and Application Cutler HG, Yokota T, Adam G, (eds) American Chemical Society, Washington DC, pp. 86-96 |
21 | Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductases. Drug Metabol Drug Interact 12:189-206 |
22 | Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995) Biological activities of biosynthetically-related congeners of brassinolide. Biosci Biotech Biochem 59:1973-1975 DOI |
23 | Fujioka S, Sakurai A (1997) Brassinosteroids Nat Prod Rep 14:1-10 DOI ScienceOn |
24 | Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743-752 DOI ScienceOn |
25 | Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubulki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BASl: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA, 96:15316-15323 DOI ScienceOn |
26 | Nelson DR, Strobel HW (1987) Evolution of cytochrome P-450 proteins. Mol Biol Evol 4:572-593 |