• Title/Summary/Keyword: Resistant Genes

Search Result 844, Processing Time 0.033 seconds

Genotypic characterization of fluoroquinolone-resistant Escherichia coli isolates from edible offal

  • Son, Se Hyun;Seo, Kwang Won;Kim, Yeong Bin;Noh, Eun Bi;Lee, Keun-Woo;Oh, Tae-Ho;Kim, Seung-Joon;Song, Jae-Chan;Kim, Tae-Wan;Lee, Young Ju
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.3
    • /
    • pp.173-177
    • /
    • 2020
  • Edible offal is easily contaminated by Escherichia coli (E. coli) and fluoroquinolone (FQ)-resistant E. coli is considered a serious public health problem, thus, this study investigated the genetic characteristics of FQ-resistant E. coli from edible offal. A total of 22 FQ-resistant E. coli isolates were tested. A double mutation in each gyrA and parC led the highest MIC. Four (18.2%) isolates carried plasmid-mediated quinolone resistance genes. The fimH, eaeA, escV, astA, and iucC genes were confirmed. Seventeen isolates (77.3%) were positive for plasmid replicons. The isolates showed high genetic heterogeneity based on pulsed-field gel electrophoresis patterns.

Screening of Rice Germplasm for the Distribution of Rice Blast Resistance Genes and Identification of Resistant Sources

  • Ali, Asjad;Hyun, Do-Yoon;Choi, Yu-Mi;Lee, Sukyeung;Oh, Sejong;Park, Hong-Jae;Lee, Myung-Chul
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.658-669
    • /
    • 2016
  • Rice blast, caused by a fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. Analyzing the valuable genetic resources is important in making progress towards blast resistance. Molecular screening of major rice blast resistance (R) genes was determined in 2,509 accessions of rice germplasm from different geographic regions of Asia and Europe using PCR based markers which showed linkage to twelve major blast R genes, Pik-p, Pi39, Pit, Pik-m, Pi-d(t)2, Pii, Pib, Pik, Pita, Pita/Pita-2, Pi5, and Piz-t. Out of 2,509 accessions, only two accessions had maximum nine blast resistance genes followed by eighteen accessions each with eight R genes. The polygenic combination of three genes was possessed by maximum number of accessions (824), while among others 48 accessions possessed seven genes, 119 accessions had six genes, 267 accessions had five genes, 487 accessions had four genes, 646 accessions had two genes, and 98 accessions had single R gene. The Pik-p gene appeared to be omnipresent and was detected in all germplasm. Furthermore, principal component analysis (PCA) indicated that Pita, Pita/Pita-2, Pi-d(t)2, Pib and Pit were the major genes responsible for resistance in the germplasm. The present investigation revealed that a set of 68 elite germplasm accessions would have a competitive edge over the current resistance donors being utilized in the breeding programs. Overall, these results might be useful to identify and incorporate the resistance genes from germplasm into elite cultivars through marker assisted selection in rice breeding.

Development of DNA Markers for Trehalose Synthesis Genes in Brassica rapa L. (배추 trehalose 합성 유전자와 연관된 DNA 마커 개발)

  • Jeong, Ye-Sol;Lim, Yong-Pyo;Hur, Yoon-kang;Chung, Sang-Min
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.639-643
    • /
    • 2009
  • High temperature stress might affect the yield and quality of Chinese cabbage. In order to develop cultivars resistant to high temperature stress, we developed polymorphic DNA markers for trehalose synthesis genes related to abiotic stress resistance. A total of 28 Brassica rapa ESTs homologous to trehalose synthesis genes of Arabidopsis were found from the NCBI database. The polymorphic DNA sequences were searched between Chinese cabbages - Chiifu, which is relatively susceptible to high temperature stress, and Kenshin, which is tolerant to high temperature stress. Among the 28 ESTs, we found 10 ESTs that have either insertion/deletion and/or single nucleotide polymorphism between the two cultivars. Those polymorphic sites were then targeted for the development of 10 PCR based markers. These molecular markers related to trehalose genes could be used not only to test their relationship with abiotic stress resistance in Chinese cabbage, but also the development of abiotic stress resistant cultivars using MAS.

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Profiles of coagulase-positive and -negative staphylococci in retail pork: prevalence, antimicrobial resistance, enterotoxigenicity, and virulence factors

  • Lee, Gi Yong;Yang, Soo-Jin
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.734-742
    • /
    • 2021
  • Objective: The present study aimed to investigate the occurrence and species of coagulase-positive staphylococci (CoPS) and coagulase-negative staphylococci (CoNS) in retail pork meat samples collected during nationwide monitoring. The staphylococcal isolates were characterized for antimicrobial and zinc chloride resistance and enterotoxigenic potential. Methods: A total of 260 pre-packaged pork meat samples were collected from 35 retail markets in 8 provinces in Korea for isolation of staphylococci. Antimicrobial and zinc chloride resistance phenotypes, and genes associated with the resistance phenotypes were determined on the isolates. Furthermore, the presence and distribution of 19 staphylococcal enterotoxin (SE) genes and enterotoxin-like genes among the pork-associated staphylococci were determined by multiplex polymerase chain reaction-based assays using the specific primer sets. Results: A total of 29 staphylococcal strains (29/260, 11.1%) were isolated from samples of retail pork meat, 24 (83%) of which were CoNS. The four CoNS species identified were S. saprophyticus (n = 16, 55%), S. sciuri (n = 3, 10%), S. warneri (n = 3, 10%), and S. epidermidis (n = 2, 7%). Among the 29 isolates, four methicillin-resistant CoNS (MR-CoNS; three S. sciuri and one S. epidermidis) and one methicillin-resistant CoPS (MR-CoPS; one S. aureus) were identified. In addition, a relatively high level of tetracycline (TET) resistance (52%) was confirmed in CoNS, along with a predominant distribution of tet(K). The most prevalent SEs were sep (45%), and sen (28%), which were carried by 81% of S. saprophyticus. Conclusion: These findings suggest that CoNS, especially S. saprophyticus strains, in raw pork meat could be a potential risk factor for staphylococcal food poisoning (SFP), and therefore, requires further investigation to elucidate the role of SEls in SFP and virulence of the pathogen. Our results also suggest that CoNS from raw pork meat may act as a source for transmission of antimicrobial resistance genes such as staphylococcal cassette chromosome mec and tet(K).

Rice blast susceptible mutants of Taebaegbyeo and genes differentially expressed in he wild type rice.

  • Lee, C. H.;C. U. Han;K. S. Jang;Park, Y. H.;H. K. Lim;Kim, J.C.;Park, G. J.;J.S. Cha;Park, J. E.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.67.2-68
    • /
    • 2003
  • A rice cultivar, Taebaegbyeo, is highly resistant to rice blast and moderately resistant to bacterial leaf blight (BLB) caused by Magnaporthe grisea and Xanthomonas oryzae pv. oryzae, respectively. To study the rice disease resistance mechanism, we generated rice deletion M3 mutants by gamma-ray irradiation. Blast and BLB responses of 16,000 M3 mutants were screened by inoculating mixtures of 4 races (KJ-201, H-1113a, KI-313, KI-409) of M. grisea and 3 Korean races of X. oryzae pv. oryzae. We selected so far 21 M3 mutants of Taebaegbyeo showing high susceptibility to the diseases. One of the mutants, KCT-6417, was susceptible to KI-1113a race of M. grisea, suggesting the deletion of a race-specific blast resistance gene in the mutant. To isolate rice genes involved in blast resistance and defense response, we take a PCR-based suppression subtractive hybridization approach using cDNAs of blast-inoculated wild type and the KCT-6417 as a tester and a driver, respectively. Genes specifically expressed in the wild type will be presented. The selected genes would give us a clue to understand mechanism for the race specific resistance and defense responses against M. grisea H-1113a in Taebaegbyeo.

  • PDF

Novel Vancomycin Resistance System in Streptomyces coelicolor

  • Hong, Hee-Jeon
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.143-147
    • /
    • 2005
  • The non-pathogenic, non-glycopeptide-producing actinomycete Streptomyces coelicolor carries a cluster of seven genes (vanSRJKHAX) that confers inducible, high-level resistance to vancomycin. The van genes are organised into four transcription units, vanRS, vanJ, vanK and vanHAX, and these transcripts are induced by vancomycin in a vanR-dependent manner. vanHAX are orthologuous to genes found in vancomycin resistant enterococci that encode enzymes predicted to reprogramme peptidoglycan biosynthesis such that cell wall precursors terminate in D-Ala-D-Lac, rather than D-Ala-D-Ala. vanR and vanS encode a two-component signal transduction system that mediates transcriptional induction of the seven van genes. vanJ and vanK are novel genes that have no counterpart in previously characterised vancomycin-resistance clusters from pathogens. VanK is essential for vancomycin resistance in S. coelicolor and it is required for adding Gly branch to stem peptides terminating D-Ala-D-Lac. Because VanK can recognise D-Lac-containing precursors but the constitutively expressed femX enzyme, encoded elsewhere on the chromosome, cannot recognize D-Lac-containing precursors as a substrate, vancomycin-induced expression of VanHAX in a vanK mutant is lethal. Further, femX null mutants are viable in the presence of glycopeptide antibiotics but die in their absence. Bioassay using vanJp-neo fusion reporter system also showed that all identified inducers for van genes expression were glycopeptide antibiotics, but teicoplanin, a membrane-anchored glycopeptide, failed to act as an inducer.

  • PDF

Molecular characteristics of ESBL-producing Escherichia coli isolated from chickens with colibacillosis

  • Yoon, Sunghyun;Lee, Young Ju
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.37.1-37.8
    • /
    • 2022
  • Background: Avian pathogenic Escherichia coli (APEC) causes colibacillosis, resulting in significant economic losses in the poultry industry. Objectives: In this study, the molecular characteristics of two extended-spectrum beta-lactamase (ESBL)-producing APEC isolates were compared with previously reported ESBL-producing E. coli isolates. Methods: The molecular characteristics of E. coli isolates and the genetic environments of the ESBL genes were investigated using whole genome sequencing. Results: The two ESBL-producing APEC were classified into the phylogenetic groups C and B1 and ST410 and ST162, respectively. Moreover, the ESBL genes of the two isolates were harbored in different Inc plasmids. The EC1809182 strain, harboring the blaCTX-M-55 gene on the plasmid, exhibited extensive homology to IncFIB (98.4%) and IncFIC(FII) (95.8%). The EC1809191 strain, harboring the blaCTX-M-1 gene, was homologous to IncI1-I (Gamma) (99.3%). All chromosomes carried the multidrug transporter, mdf(A) gene. Mobile genetic elements, adjacent to CTX-M genes, facilitated the dissemination of genes in the two isolates, analogous to other ESBL-producing E. coli isolates. Conclusions: This study clarifies the transmission dynamics of CTX-M genes and supports strengthened surveillance to prevent the transmission of the antimicrobial-resistant genes to humans via the food chain.

Co-occurrence Analyses of Antibiotic Resistance Genes and Microbial Community in Human and Livestock Animal Feces (사람 및 가축 유래 분변 미생물 군집과 항생제 내성 유전자 간 상관 관계에 대한 연구)

  • Jiwon Jeong;Aprajita Bhandari;Tatsuya Unno
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.335-343
    • /
    • 2022
  • BACKGROUND: Antibiotics used in animal husbandry for disease prevention and treatment have resulted in the rapid progression of antibiotic resistant bacteria which can be introduced into the environment through livestock feces/manure, disseminating antibiotic resistant genes (ARGs). In this study, fecal samples were collected from the livestock farms located in Jeju Island to investigate the relationship between microbial communities and ARGs. METHODS AND RESULTS: Illumina MiSeq sequencing was applied to characterize microbial communities within each fecal sample. Using quantitative PCR (qPCR), ten ARGs encoding tetracycline resistance (tetB, tetM), sulfonamide resistance (sul1, sul2), fluoroquinolone resistance (qnrD, qnrS), fluoroquinolone and aminoglycoside resistance (aac(6')-Ib), beta-lactam resistance (blaTEM, blaCTX-M), macrolide resistance (ermC), a class 1 integronsintegrase gene (intI1), and a class 2 integrons-integrase gene (intI2) were quantified. The results showed that Firmicutes and Bacteroidetes were dominant in human, cow, horse, and pig groups, while Firmicutes and Actinobacteria were dominant in chicken group. Among ARGs, tetM was detected with the highest number of copies, followed by sul1 and sul2. Most of the genera belonging to Firmicutes showed positive correlations with ARGs and integron genes. There were 97, 34, 31, 25, and 22 genera in chicken, cow, pig, human, and horse respectively which showed positive correlations with ARGs and integron genes. In network analysis, we identified diversity of microbial communities which correlated with ARGs and integron genes. CONCLUSION(S): In this study, antibiotic resistance patterns in human and livestock fecal samples were identified. The abundance of ARGs and integron genes detected in the samples were associated with the amount of antibiotics commonly used for human and livestocks. We found diverse microbial communities associated with antibiotics resistance genes in different hosts, suggesting that antibiotics resistance can disseminate across environments through various routes. Identifying the routes of ARG dissemination in the environment would be the first step to overcome the challenge of antibiotic resistance in the future.

Effective Combination of Resistance Genes against Rice Bacterial Blight Pathogen (벼흰잎마름병 저항성 증진을 위한 유전자 조합)

  • Kim, Ki-Young;Shin, Mun-Sik;Kim, Woo-Jae;Mo, Young-Jun;Nam, Jeong-Kwon;Noh, Tae-Hwan;Kim, Bo-Kyeong;Ko, Jae-Kwon
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.244-251
    • /
    • 2009
  • This study was carried out to identify useful single gene and gene combination resistant to K1, K2, K3 and 24 bacterial blight(BB) isolates (including K3a, HB01009) breaking down Xa3 gene. Xa3, Xa4, xa5 and Xa7 genes were resistant to K1, K2, K3 of bacterial blight pathogen. Against 24 BB isolates breaking down Xa3 gene, Xa1, Xa2, xa8, Xa10, Xa11, xa13 genes were susceptible, whereas Xa4 gene was moderately resistant and xa5 and Xa21 genes were resistant. IRBB7 having Xa7 gene showed resistance responding to 24 BB isolates, whereas IRBB107 carrying Xa7 gene was susceptible to 10 BB isolates and moderately resistant to 14 BB isolates. Near-isogenic lines (NILs) of Toyonishiki and IR24, both possessing Xa7 gene, showed different resistance response against 24 BB isolates according to genetic background. Xa3+xa5, Xa4+xa5, Xa4+xa13, Xa4+Xa21, xa5+xa13, xa5+Xa21, xa13+Xa21, Xa4+xa5+xa13, Xa4+xa5+Xa21, Xa4+xa13+Xa21, xa5+xa13+Xa21, and Xa4+xa5+xa13+Xa21 were resistant to K1, K2, K3 and 24 isolates breaking down Xa3 gene. When Xa3 and xa13 genes were combined with xa5, Xa4, Xa21, resistance response was enhanced compared with single gene lines containg only Xa3 or xa13. Similarly, when Xa4 gene was combined with xa5 and Xa21, resistance response was improved by the gene combination effect.