1 |
Wu S, Huang J, Wu Q, et al. Staphylococcus aureus isolated from retail meat and meat products in China: incidence, antibiotic resistance and genetic diversity. Front Microbiol 2018;9:2767. https://doi.org/10.3389/fmicb.2018.02767
DOI
|
2 |
Tulinski P, Fluit AC, Wagenaar JA, Mevius D, van de Vijver L, Duim B. Methicillin-resistant coagulase-negative staphylococci on pig farms as a reservoir of heterogeneous staphylococcal cassette chromosome mec elements. Appl Environ Microbiol 2012;78:299-304. https://doi.org/10.1128/AEM.05594-11
DOI
|
3 |
de Freitas Guimaraes F, Nobrega DB, Richini-Pereira VB, Marson PM, de Figueiredo Pantoja JC, Langoni H. Enterotoxin genes in coagulase-negative and coagulase-positive staphylococci isolated from bovine milk. J Dairy Sci 2013;96:2866-72. https://doi.org/10.3168/jds.2012-5864
DOI
|
4 |
Rolo J, Worning P, Nielsen JB, et al. Evolutionary origin of the staphylococcal cassette chromosome mec (SCCmec). Antimicrob Agents Chemother 2017;61:e02302-16. https://doi.org/10.1128/AAC.02302-16
DOI
|
5 |
Lee HS, Kwon M, Heo S, Kim MG, Kim GB. Characterization of the biodiversity of the spoilage microbiota in chicken meat using next generation sequencing and culture dependent approach. Korean J Food Sci Anim Resour 2017;37:535-41. http://doi.org/10.5851/kosfa.2017.37.4.535
DOI
|
6 |
Park JY, Fox LK, Seo KS, et al. Detection of classical and newly described staphylococcal superantigen genes in coagulasenegative staphylococci isolated from bovine intramammary infections. Vet Microbiol 2011;147:149-54. https://doi.org/10.1016/j.vetmic.2010.06.021
DOI
|
7 |
Li H, Andersen PS, Stegger M, et al. Antimicrobial resistance and virulence gene profiles of methicillin-resistant and -susceptible Staphylococcus aureus from food products in Denmark. Front Microbiol 2019;10:2681. https://doi.org/10.3389/fmicb.2019.02681
DOI
|
8 |
Argudin MA, Lauzat B, Kraushaar B, et al. Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates. Vet Microbiol 2016;191:88-95. https://doi.org/10.1016/j.vetmic.2016.06.004
DOI
|
9 |
Lee HH, Lee GY, Eom HS, Yang SJ. Occurrence and characteristics of methicillin-resistant and -susceptible Staphylococcus aureus isolated from the beef production chain in Korea. Food Sci Anim Resour 2020;40:401-14. https://doi.org/10.5851/kosfa.2020.e20
DOI
|
10 |
Wang G, Wang H, Han Y, et al. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiol 2017;63:139-46. https://doi.org/10.1016/j.fm.2016.11.015
DOI
|
11 |
Fisher EL, Otto M, Cheung GYC. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front Microbiol 2018;9:436. https://doi.org/10.3389/fmicb.2018.00436
DOI
|
12 |
Pyzik E, Marek A, Stepien-Pysniak D, Urban-Chmiel R, Jarosz LS, Jagiello-Podebska I. Detection of antibiotic resistance and classical enterotoxin genes in coagulase -negative staphylococci isolated from poultry in Poland. J Vet Res 2019;63:183-90. https://doi.org/10.2478/jvetres-2019-0023
DOI
|
13 |
Fijalkowski K, Peitler D, Karakulska J. Staphylococci isolated from ready-to-eat meat - identification, antibiotic resistance and toxin gene profile. Int J Food Microbiol 2016;238:113-20. https://doi.org/10.1016/j.ijfoodmicro.2016.09.001
DOI
|
14 |
Ng LK, Martin I, Alfa M, Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 2001;15:209-15. https://doi.org/10.1006/mcpr.2001.0363
DOI
|
15 |
Vanderhaeghen W, Vandendriessche S, Crombe F, et al. Species and staphylococcal cassette chromosome mec (SCCmec) diversity among methicillin-resistant non-Staphylococcus aureus staphylococci isolated from pigs. Vet Microbiol 2012;158:123-8. https://doi.org/10.1016/j.vetmic.2012.01.020
DOI
|
16 |
Wendlandt S, Shen J, Kadlec K, et al. Multidrug resistance genes in staphylococci from animals that confer resistance to critically and highly important antimicrobial agents in human medicine. Trends Microbiol 2015;23:44-54. https://doi.org/10.1016/j.tim.2014.10.002
DOI
|
17 |
Price LB, Stegger M, Hasman H, et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 2012;3:e00305-11. https://doi.org/10.1128/mBio.00305-11
DOI
|
18 |
Eom HS, Back SH, Lee HH, Lee GY, Yang SJ. Prevalence and characteristics of livestock-associated methicillin-susceptible Staphylococcus aureus in the pork production chain in Korea. J Vet Sci 2019;20:e69. https://doi.org/10.4142/jvs.2019.20.e69
DOI
|
19 |
Hau SJ, Frana T, Sun J, Davies PR, Nicholson TL. Zinc resistance within swine-associated methicillin-resistant Staphylococcus aureus isolates in the United States is associated with multilocus sequence type lineage. Appl Environ Microbiol 2017;83:e00756-17. https://doi.org/10.1128/AEM.00756-17
DOI
|
20 |
Kondo Y, Ito T, Ma XX, et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 2007;51:264-74. https://doi.org/10.1128/AAC.00165-06
DOI
|
21 |
Clyne M, De Azavedo J, Carlson E, Arbuthnott J. Production of gamma-hemolysin and lack of production of alpha-hemolysin by Staphylococcus aureus strains associated with toxic shock syndrome. J Clin Microbiol 1988;26:535-9. http://doi.org/10.1128/JCM.26.3.535-539.1988
DOI
|
22 |
Back SH, Eom HS, Lee HH, Lee GY, Park KT, Yang SJ. Livestock-associated methicillin-resistant Staphylococcus aureus in Korea: antimicrobial resistance and molecular characteristics of LA-MRSA strains isolated from pigs, pig farmers, and farm environment. J Vet Sci 2020;21:e2. https://doi.org/10.4142/jvs.2020.21.e2
DOI
|
23 |
Igbinosa EO, Beshiru A, Akporehe LU, Oviasogie FE, Igbinosa OO. Prevalence of methicillin-resistant Staphylococcus aureus and other Staphylococcus species in raw meat samples intended for human consumption in Benin city, Nigeria: implications for public health. Int J Environ Res Public Health 2016;13:949. https://doi.org/10.3390/ijerph13100949
DOI
|
24 |
Aarestrup FM, Cavaco L, Hasman H. Decreased susceptibility to zinc chloride is associated with methicillin resistant Staphylococcus aureus CC398 in Danish swine. Vet Microbiol 2010;142:455-7. https://doi.org/10.1016/j.vetmic.2009.10.021
DOI
|
25 |
Cavaco LM, Hasman H, Aarestrup FM. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet Microbiol 2011;150:344-8. https://doi.org/10.1016/j.vetmic.2011.02.014
DOI
|
26 |
Mama OM, Ruiz-Ripa L, Lozano C, Gonzalez-Barrio D, Ruiz-Fons JF, Torres C. High diversity of coagulase negative staphylococci species in wild boars, with low antimicrobial resistance rates but detection of relevant resistance genes. Comp Immunol Microbiol Infect Dis 2019;64:125-9. https://doi.org/10.1016/j.cimid.2019.03.006
DOI
|
27 |
O'Brien AM, Hanson BM, Farina SA, et al. MRSA in conventional and alternative retail pork products. PLoS One 2012;7:e30092. https://doi.org/10.1371/journal.pone.0030092
DOI
|
28 |
Li L, Chen Z, Guo D, et al. Nasal carriage of methicillin-resistant coagulase-negative staphylococci in healthy humans is associated with occupational pig contact in a dose-response manner. Vet Microbiol 2017;208:231-8. https://doi.org/10.1016/j.vetmic.2017.08.012
DOI
|
29 |
Wang YT, Lin YT, Wan TW, et al. Distribution of antibiotic resistance genes among Staphylococcus species isolated from ready-to-eat foods. J Food Drug Anal 2019;27:841-8. https://doi.org/10.1016/j.jfda.2019.05.003
DOI
|
30 |
Abdalrahman LS, Wells H, Fakhr MK. Staphylococcus aureus is more prevalent in retail beef livers than in pork and other beef cuts. Pathogens 2015;4:182-98. https://doi.org/10.3390/pathogens4020182
DOI
|
31 |
de Lourdes RS da Cunha M, Calsolari RAO, Junior JPA. Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus, with emphasis on coagulase-negative staphylococci. Microbiol Immunol 2007;51:381-90. https://doi.org/10.1111/j.1348-0421.2007.tb03925.x
DOI
|
32 |
Nair R, Thapaliya D, Su Y, Smith TC. Resistance to zinc and cadmium in Staphylococcus aureus of human and animal origin. Infect Control Hosp Epidemiol 2014;35(Suppl 3):S32-9. https://doi.org/10.1086/677834
DOI
|
33 |
Slifierz MJ, Park J, Friendship RM, Weese JS. Zinc-resistance gene czrC identified in methicillin-resistant Staphylococcus hyicus isolated from pigs with exudative epidermitis. Can Vet J 2014;55:489-90.
|
34 |
Argudin MA, Butaye P. Dissemination of metal resistance genes among animal methicillin-resistant coagulase-negative staphylococci. Res Vet Sci 2016;105:192-4. https://doi.org/10.1016/j.rvsc.2016.02.009
DOI
|
35 |
Schelin J, Wallin-Carlquist N, Cohn MT, Lindqvist R, Barker GC. The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence 2011;2:580-92. https://doi.org/10.4161/viru.2.6.18122
DOI
|
36 |
Czop JK, Bergdoll MS. Staphylococcal enterotoxin synthesis during the exponential, transitional, and stationary growth phases. Infect Immun 1974;9:229-35. http://doi.org/10.1128/IAI.9.2.229-235.1974
DOI
|