• Title/Summary/Keyword: Resistance switching

Search Result 367, Processing Time 0.025 seconds

Switching Surge Analysis of Underground Transmission Systems (지중송전시스템의 스위칭서지 해석)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Jang, Sung-Hwan;Kang, Ji-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.481-483
    • /
    • 2002
  • In this paper, for continuously changed closing time of circuit breakers, switching overvoltage on 345kV underground transmission systems are variously analyzed using EMTP with statistical analysis method. And, switching overvoltage and closing surge occurred in conductors at sending and receiving end and metal sheath with variation of cable length are analyzed, and the reduction effects for switching overvoltage considered preinsertion resistance of circuit breakers are examined.

  • PDF

Single-Phase converter with partial resonant circuit (단상 컨버터의 부분공진 회로)

  • Lee, Hyun-Woo;Kwak, Dong-Kurl
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.129-131
    • /
    • 1993
  • Power conversion system of high performance requires high switching frequency power converter. In order to minimize commutation stress and switching losses, in this paper, AC-DC converter is embedded a partial resonant DC-Link circuit with the object of ZVCS(zero voltage switching and zero current switching). The partial resonant occurs just before converter switch operates. Thus, VA ratings of the elements and their dissipations due to effective series resistance (ESR) are very low. Some simulative results on computer are included to confirm the validity of the analytical results.

  • PDF

Mott-Insulator Metal Switching Technology for New Concept Devices (신개념 스위칭 소자를 위한 모트-절연체 금속 전이 기술)

  • Kim, H.T.;Roh, T.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.34-40
    • /
    • 2021
  • For developing a switching device of a new concept that cannot be implemented with a semiconductor device, we introduce the Mott insulator-metal transition (IMT) phenomenon occurring out of the semiconductor regime, such as the temperature-driven IMT, the electric-field or voltage-driven IMT, the negative differential resistance (NDR)-IMT switching generated at constant current, and the NDR-based IMT-oscillation. Moreover, the possibilities of new concept IMT switching devices are briefly explained.

The Determinants of User Resistance to Adopting e-Books : Based on Innovation Characteristics and User Attitude (전자책 수용에 대한 사용자 저항 결정요인 : 혁신특성과 사용자태도를 중심으로)

  • Lee, Aeri;Choi, Jaewon;Kim, Kyung Kyu
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.4
    • /
    • pp.95-115
    • /
    • 2012
  • The e-Book market has rapidly grown as an innovative product which is mixed its traditional and technological characteristics. However, decreasing user resistance to the e-Book is very important to continually keeping up its market growth. Previous studies for user resistance have been studied as a negative barrier for various innovative products with importance of user resistance. Nevertheless, the factors for user' resistance to the e-Book field have not been found out considering both perceived value and switching cost. Especially, both innovative technology and user specifics should be considered when explaining user resistance to adopting e-Books. Thus, the purpose of this study is to understand the process for user resistance to the e-book and find out its antecedents with perceived value and switching cost at the same time. As a result, it appeared that triability, uncertainty and complexity affected perceived value and switching cost. The user-based antecedents like social norm and perceived value increased the effect of self-efficacy. Also, self-efficacy and perceived value decreased user resistance whereas switching cost increase user resistance to the e-Book perspective.

Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs

  • Kang, Min-Seok;Bahng, Wook;Kim, Nam-Kyun;Ha, Jae-Geun;Koh, Jung-Hyuk;Koo, Sang-Mo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.236-239
    • /
    • 2012
  • In this paper, we study the transient characteristics of 4H-SiC DMOSFETs with different interface charges to improve the turn-on rising time. A physics-based two-dimensional mixed device and circuit simulator was used to understand the relationship between the switching characteristics and the physical device structures. As the $SiO_2$/SiC interface charge increases, the current density is reduced and the switching time is increased, which is due primarily to the lowered channel mobility. The result of the switching performance is shown as a function of the gate-to-source capacitance and the channel resistance. The results show that the switching performance of the 4H-SiC DMOSFET is sensitive to the channel resistance that is affected by the interface charge variations, which suggests that it is essential to reduce the interface charge densities in order to improve the switching speed in 4H-SiC DMOSFETs.

Effect of Channel Variation on Switching Characteristics of LDMOSFET

  • Lee, Chan-Soo;Cui, Zhi-Yuan;Kim, Kyoung-Won
    • Journal of Semiconductor Engineering
    • /
    • v.3 no.2
    • /
    • pp.161-167
    • /
    • 2022
  • Electrical characteristics of LDMOS power device with LDD(Lightly Doped Drain) structure is studied with variation of the region of channel and LDD. The channel in LDMOSFET encloses a junction-type source and is believed to be an important parameter for determining the circuit operation of CMOS inverter. Two-dimensional TCAD MEDICI simulation is used to study hot-carrier effect, on-resistance Ron, breakdown voltage, and transient switching characteristic. The voltage-transfer characteristics and on-off switching properties are studied as a function of the channel length and doping levels. The digital logic levels of the output and input voltages are analyzed from the transfer curves and circuit operation. Study indicates that drain current significantly depends on the channel length rather than the LDD region, while the switching transient time is almost independent of the channel length. The high and low logic levels of the input voltage showed a strong dependency on the channel length, while the lateral substrate resistance from a latch-up path in the CMOS inverter was comparable to that of a typical CMOS inverter with a guard ring.

Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing

  • Han, Jiyeon;Jung, Yeonjoo;Jun, Yukyung;Park, Sungsu;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2021
  • BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

A Study on the Switching and Retention Characteristics of PLT(5) Thin Films (PLT(5) 박막의 Switching 및 Retention 특성에 관한 연구)

  • Choi Joon Young;Chang Dong Hoon;Kang Seong Jun;Yoon Yung Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • We fabricate PLT(5) thin film on Pt/TiO/sub x/SiO₂/Si substrate by using sol-gel method and investigate leakage current, switching and retention properties. The leakage current density of PLT(5) thin film is 3.56×10/sup -7/A/㎠ at 4V. In the examination of switching properties, pulse voltage and load resistance were 2V~5V and 50Ω~3.3kΩ, respectively. Switching time has a tendency to decrease from 0.52㎲ to 0.14㎲ with the increase of pulse voltage, and also the time increases from 0.14㎲ to 13.7㎲ with the increase of load resistance. The activation energy obtained from the relation of applied pulse voltage and switching time is about 135kV/cm. The error of switched charge density between hysteresis loop and experiment of polarization switching is about 10%. Also, polarization in retention decreases as much as about 8% after l0/sup 5/s.

Resistive Switching Behavior of Cr-Doped SrZrO3 Perovskite Thin Films by Oxygen Pressure Change (산소 분압의 변화에 따른 Cr-Doped SrZrO3 페로브스카이트 박막의 저항변화 특성)

  • Yang, Min-Kyu;Park, Jae-Wan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.257-261
    • /
    • 2010
  • A non-volatile resistive random access memory (RRAM) device with a Cr-doped $SrZrO_3/SrRuO_3$ bottom electrode heterostructure was fabricated on $SrTiO_3$ substrates using pulsed laser deposition. During the deposition process, the substrate temperature was $650^{\circ}C$ and the variable ambient oxygen pressure had a range of 50-250 mTorr. The sensitive dependences of the film structure on the processing oxygen pressure are important in controlling the bistable resistive switching of the Cr-doped $SrZrO_3$ film. Therefore, oxygen pressure plays a crucial role in determining electrical properties and film growth characteristics such as various microstructural defects and crystallization. Inside, the microstructure and crystallinity of the Cr-doped $SrZrO_3$ film by oxygen pressure were strong effects on the set, reset switching voltage of the Cr-doped $SrZrO_3$. The bistable switching is related to the defects and controls their number and structure. Therefore, the relation of defects generated and resistive switching behavior by oxygen pressure change will be discussed. We found that deposition conditions and ambient oxygen pressure highly affect the switching behavior. It is suggested that the interface between the top electrode and Cr-doped $SrZrO_3$ perovskite plays an important role in the resistive switching behavior. From I-V characteristics, a typical ON state resistance of $100-200\;{\Omega}$ and a typical OFF state resistance of $1-2\;k{\Omega}$, were observed. These transition metal-doped perovskite thin films can be used for memory device applications due to their high ON/OFF ratio, simple device structure, and non-volatility.

Switching Surge Analysis and Evaluation in Combined Transmission System with 345kV GIL (345kV급 가공송전선로와 GIL이 연계된 혼합송전계통에서 개폐과전압 해석 및 검토)

  • Jang, Hwa-Youn;Lee, Jong-Beom;Kim, Yong-Kap;Jang, Tae-In
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1811-1816
    • /
    • 2011
  • This paper describes switching surge analysis for reclosing decision in 345kV combined transmission line with GIL. Reclosing operation should be decided based on the detailed technical analysis in combined transmission line because this line includes power cable section which is week on insulation. Insulation of power cable can be breakdown at the week point in case of reclosing moment. Therefore the detailed analysis has to be carried out by considering several conditions such as charging rate, inserting resistance, arrester, length ratio of power cable section, grounding resistance, etc. Analysis is performed by EMTP/ATP.