• Title/Summary/Keyword: Removal fusion

Search Result 115, Processing Time 0.031 seconds

Treatment of Surgical Site Infection and Delayed Union in Fetlock Arthrodesis of a Mare

  • Lee, Sang-Kyu;Kim, Jinyoung;Seo, Jong-pil;Lee, Inhyung;Kang, Byung-Jae
    • Journal of Veterinary Clinics
    • /
    • v.37 no.3
    • /
    • pp.157-162
    • /
    • 2020
  • A 6-year-old Thoroughbred mare presented to the Korea Racing Authority Equine Hospital with dropping of the left front fetlock due to an injury sustained while racing. Radiographic examination revealed a comminuted fracture of both proximal sesamoid bones of the affected fetlock. Arthrodesis of the fetlock joint using a broad dynamic compression plate with a tension band wire was performed as a salvage procedure for the future use as a broodmare. After surgery, however, a delayed union of the bones and surgical site infection was present for a prolonged period. Staphylococcus aureus was persistently identified from the surgical site, and antimicrobial therapies were based on antibiotic sensitivity tests, including regional perfusions. The removal and replacement of surgical implants associated with seropurulent discharge was based on coordinating the development of fetlock ankylosis and infection control over 13 months. Firstly, seven screws associated with surgical drainage were replaced and bone morphogenetic protein-2 (BMP-2) and local antibiotics were placed into the surgical site to accelerate bone fusion at postoperative month 7. Further six screws, along with drainage, were removed at postoperative month 10. The plate and screws were removed from the limb due to the progression of bone fusion at postoperative month 13; BMP-2 and local antibiotics were also used. Delayed healing of arthrodesis due to surgical site infection and implant instability were treated by implant removals and antibiotic therapies, and the horse eventually showed improved weight-bearing ability of the affected limb.

A Study on the ELID Grinding Properties of Single Crystal Sapphire Wafer using Ultrasonic Table (초음파 테이블을 이용한 단결정 사파이어 웨이퍼의 ELID 연삭가공 특성 연구)

  • Hwang, JinHa;Kwak, Tae-Soo;Lee, Deug-Woo;Jung, Myung-Won;Lee, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2013
  • Single crystal sapphire being used in high technology industry is a brittle material with a high hardness and excellent physical properties. ELID(Electrolytic In-Process Dressing) grinding technology was applied to material removal machining process of single crystal sapphire wafer. Ultrasonic vibration which added to material using ultrasonic table was adopted to efficient ELID grinding of sapphire materials. The evaluation of the ground surface of single crystal sapphire wafer was carried out by means of surface measuring by using AFM(Atomic Force Microscope), surface roughness tester and optical microscope device. As the results of experiment, it was shown that more efficient grinding was conducted when using ultrasonic table. In case of using #170 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was superior to ELID ground specimen without ultrasonic table. However, In case of using #2000 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was inferior to ELID ground specimen without ultrasonic table.

Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage (수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가)

  • Lee, Jungmin;Park, Jongchul;Koo, Daeseo;Chung, Dongyou;Yun, Sei-Hun;paek, Seungwoo;Chung, Hongsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.

Construction, Investigation and Application of TEV Protease Variants with Improved Oxidative Stability

  • Bayar, Enkhtuya;Ren, Yuanyuan;Chen, Yinghua;Hu, Yafang;Zhang, Shuncheng;Yu, Xuelian;Fan, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1732-1740
    • /
    • 2021
  • Tobacco etch virus protease (TEVp) is a useful tool for removing fusion tags, but wild-type TEVp is less stable under oxidized redox state. In this work, we introduced and combined C19S, C110S and C130S into TEVp variants containing T17S, L56V, N68D, I77V and S135G to improve protein solubility, and S219V to inhibit self-proteolysis. The solubility and cleavage activity of the constructed variants in Escherichia coli strains including BL21(DE3), BL21(DE3)pLys, Rossetta(DE3) and Origami(DE3) under the same induction conditions were analyzed and compared. The desirable soluble amounts, activity, and oxidative stability were identified to be reluctantly favored in the TEVp. Unlike C19S, C110S and C130S hardly impacted on decreasing protein solubility in the BL21(DE3), but they contributed to improved tolerance to the oxidative redox state in vivo and in vitro. After two fusion proteins were cleaved by purified TEVp protein containing double mutations under the oxidized redox state, the refolded disulfide-rich bovine enterokinase catalytic domain or maize peroxidase with enhanced yields were released from the regenerated amorphous cellulose via affinity absorption of the cellulose-binding module as the affinity tag.

Enhancement of Manganese Removal Ability from Water Phase Using Biochar of Prinus densiflora Bark (소나무 수피 바이오차를 이용한 수중에서 망간의 제거능력 향상)

  • Kim, Min-Ji;Choi, Jung Hoon;Choi, Tae Ryeong;Choi, Suk Soon;Ha, Jeong Hyub;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.526-531
    • /
    • 2020
  • Manganese ions contained in water phase are acting as a toxic substance in the human body and also known to affect the nervous system. In particular, effective treatment technology is required since manganese removal is difficult due to its high solubility in a wide pH range. In this study, Prinus densiflora bark was chemically modified with hydrogen peroxide, and the modified adsorbent was used for removing manganese ions in an aqueous solution. The modified adsorbent showed high removal capacity of 82.1 and 56.2%, respectively, at conditions of 5 and 10 mg/L manganese ions. Also, the adsorption isotherm from the data was applied to the theoretical equation. As a result, the adsorption behavior of manganese ions was better suited to the Langmuir than Freundlich model, and it was also found from kinematics that the pseudo-second order kinetic model was more suitable. In addition, the changes of Gibbs free energy indicated that the adsorption reaction became more spontaneously with increasing temperature. Consequently, these experimental results may be used as a water treatment technology which can efficiently treat manganese ions contained in water.

Ti/Cu CMP process for wafer level 3D integration (웨이퍼 레벨 3D Integration을 위한 Ti/Cu CMP 공정 연구)

  • Kim, Eunsol;Lee, Minjae;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.37-41
    • /
    • 2012
  • The wafer level stacking with Cu-to-Cu bonding becomes an important technology for high density DRAM stacking, high performance logic stacking, or heterogeneous chip stacking. Cu CMP becomes one of key processes to be developed for optimized Cu bonding process. For the ultra low-k dielectrics used in the advanced logic applications, Ti barrier has been preferred due to its good compatibility with porous ultra low-K dielectrics. But since Ti is electrochemically reactive to Cu CMP slurries, it leads to a new challenge to Cu CMP. In this study Ti barrier/Cu interconnection structure has been investigated for the wafer level 3D integration. Cu CMP wafers have been fabricated by a damascene process and two types of slurry were compared. The slurry selectivity to $SiO_2$ and Ti and removal rate were measured. The effect of metal line width and metal density were evaluated.

Effect of Microwave and High-temperature Heating Methods on Contaminates Removal from Oil-contaminated Soil by Heat Treatment (유류오염토양의 열처리에서 micro파와 고온발열체 방법이 오염제거에 미치는 영향)

  • Ha, Sang-An;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.46-52
    • /
    • 2014
  • This study was conducted to observe the removal efficiency of oil-contaminated soil by various tests using microwaves and high-temperature heating elements. The water content was measured with the treatment amount, which was lowered to 300g in a relatively short amount of time. The treatment rate of TPH(Total Petroleum Hydrocarbons) showed the highest value with 70.1% when the SiC-activated carbon heating element was at 4 kW/kg, compared to the SiC heating element used alone. In particular, the higher electric power became, the higher treatment rate became, except at 3 kW. In the case of the heating element made by the fusion of SiC and activated carbon, the internal temperature exceeded $300^{\circ}C$ and again fell when it was treated at 4 kW for about 2 minutes. Then, after about 8 minutes, it rose again. On the basis of such results, the energy content necessary for the sample was calculated according to the electric power of microwaves, and tthe constant of TPH treatment was measured by tests on the treatment characteristics of oil-contaminated soil.

Performance Analysis of a Desiccant Rotor for Rotational Period in a Desiccant Cooling System (제습냉방시스템의 제습로터 회전주기변화에 따른 제습성능해석)

  • Pi, Chang-Hun;Kang, Byung-Ha;Chang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.523-531
    • /
    • 2012
  • The performance simulation of a desiccant rotor, which is a core component of a desiccant cooling system, was conducted on the basis of a theoretical solution of the heat and mass transfer process in the rotor. The simulation model was validated by comparing simulation results with experimental data; reasonable agreement was observed. The effect of the rotation speed on the performance of the desiccant rotor was investigated for various operation conditions: temperature (50 to $70^{\circ}C$), humidity ratio (0.01 to 0.02 kg/kg DA), and flow rate of regeneration air. The optimum rotation speed was determined from the maximum moisture removal capacity (MRC) of the desiccant rotor, and it was found to vary with the operation conditions. Further, the correlation for the optimum rotation speed was determined by regression analysis.

Posterior Left Ventricular Wall Rupture After Mitral Valve Replacement (승모판 치환술후 발생한 좌심실 후벽 파열)

  • 강면식
    • Journal of Chest Surgery
    • /
    • v.25 no.11
    • /
    • pp.1254-1260
    • /
    • 1992
  • Rupture of the posterior left ventricular wall following mitral valve replacement is a rare but fatal complication. Over a 10 year period from August 25 1980 to November 27 1990, we have experienced 6 such patients among 884 cases of mitral valve replacement with 4 deaths and 2 survivors. One patient had a type I rupture and another a type II rapture with the remaining four patients having suffered type III ruptures. All of the ruptures were dis covered intraoperatively enabling prompt reinstitution of the cardiopulmonary bypass and subsequent cardioplegic arrest prior to repair. Overzealous removal of calcified valve leaflets seemed to be responsible for the single type I rupture, and untethering of the so called ventricular loop appeared to be the main mechanism responsible for the type III ruptures. The single type II rupture that had occurred seemed to have been caused by inadvertent laceration of the papillary muscle with resultant rupture of the posterior LV wall at the base of the papillary muscle. Among the type III ruptures, 2 patients required intraaortic balloon pump[IABP] support only for mechanical assistance and 1 patient required both the IABP and the Biomedicus LV assist device for successfull weaning following repair of the LV rupture Another patient with a type II rupture also required the circulatory assistance of both the IABP and the bio-medicus LV assist device for weaning from the bypass. Attention to meticulous technical considerations such as avoiding over aggressive removal of heavily calcified valvular tissue, preservation of as much mural leaflet tissue and chordal stuctures as possible seemed helpful in preventing this catastrophic complication from occurring. Fusion and fibrous stricture of the chordal structures appeared particularly conducive to the type II ruptures as a result of the increased susceptibility to papillary injury during operation.

  • PDF

Improvement of Virus Safety of an Antihemophilc Factor IX by Virus Filtration Process

  • Kim, In-Seop;Choi, Yong-Woon;Kang, Yong;Sung, Hark-Mo;Sohn, Ki-Whan;Kim, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1317-1325
    • /
    • 2008
  • Viral safety is an important prerequisite for clinical preparations of plasma-derived pharmaceuticals. One potential way to increase the safety of therapeutic biological products is the use of a virus-retentive filter. In order to increase the viral safety of human antihemophilic factor IX, particularly in regard to non-enveloped viruses, a virus removal process using a polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. The most critical factor affecting the filtration efficiency was operating pH and the optimum pH was 6 or 7. Flow rate increased with increasing operating pressure and temperature. Recovery yield in the optimized production-scale process was 96%. No substantial changes were observed in the physical and biochemical characteristics of the filtered factor IX in comparison with those before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production-scale cartridges and to test if it could remove several experimental model viruses for human pathogenic viruses, including human hepatitis A virus (HAV), porcine parvovirus (PPV), murine encephalomyocarditis virus (EMCV), human immunodeficiency virus type 1 (HIV), bovine viral diarrhea virus (BVDV), and bovine herpes virus (BHV). Non-enveloped viruses (HAV, PPV, and EMCV) as well as enveloped viruses (HIV, BVDV, and BHV) were completely removed during filtration. The log reduction factors achieved were $\geq$6.12 for HAV, $\geq$4.28 for PPV, $\geq$5.33 for EMCV, $\geq$5.51 for HIV, $\geq$5.17 for BVDV, and $\geq$5.75 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of factor IX.