DOI QR코드

DOI QR Code

Performance Analysis of a Desiccant Rotor for Rotational Period in a Desiccant Cooling System

제습냉방시스템의 제습로터 회전주기변화에 따른 제습성능해석

  • Pi, Chang-Hun (Dept. of Mechanical Engineering, Graduate School, Kookmin Univ.) ;
  • Kang, Byung-Ha (School of Mechanical Systems Engineering, Kookmin Univ.) ;
  • Chang, Young-Soo (Dept. of Advanced Fermentation Fusion Science and Technology, Kookmin Univ.)
  • 피창헌 (국민대학교 대학원 기계시스템공학부) ;
  • 강병하 (국민대학교 기계시스템공학부) ;
  • 장영수 (국민대학교 발효융합학과)
  • Received : 2011.12.27
  • Accepted : 2012.02.28
  • Published : 2012.05.01

Abstract

The performance simulation of a desiccant rotor, which is a core component of a desiccant cooling system, was conducted on the basis of a theoretical solution of the heat and mass transfer process in the rotor. The simulation model was validated by comparing simulation results with experimental data; reasonable agreement was observed. The effect of the rotation speed on the performance of the desiccant rotor was investigated for various operation conditions: temperature (50 to $70^{\circ}C$), humidity ratio (0.01 to 0.02 kg/kg DA), and flow rate of regeneration air. The optimum rotation speed was determined from the maximum moisture removal capacity (MRC) of the desiccant rotor, and it was found to vary with the operation conditions. Further, the correlation for the optimum rotation speed was determined by regression analysis.

제습냉방시스템에서 주요 구성부품인 제습로터의 성능을 극대화 시키기 위한 방법으로 제습로터의 회전주기의 제어에 대한 연구를 수행하였다. 열과 물질전달의 과정을 모델화하여 얻은 수치해를 바탕으로 제습로터성능 시뮬레이션 프로그램을 구성하여, 재생공기 온습도, 풍량 등의 운전조건에 대하여 회전 주기에 따른 제습로터의 제습량을 구하였다. 성능 시뮬레이션 결과 검증을 위하여, 실험을 통해 측정된 값과 성능해석 모델을 이용하여 계산된 값을 비교함으로써 성능 시뮬레이션 모델의 타당성을 보였다. 각 운전조건에서 제습량이 최대가되는 제습로터의 회전주기를 최적 회전주기로 정의하였고, 회전주기를 고정(400s)할 때의 제습성능과 비교하여, 최적 회전주기제어가 제습성능에 미치는 영향을 분석하였다. 그리고 회귀분석법을 이용하여 재생온도, 외기상대습도, 풍량을 변수로 하는 최적 회전주기의 예측상관식을 개발하고 시뮬레이션 값과 비교하여 검토하였다.

Keywords

References

  1. Daou, K., Wang, R. Z. and Xia, Z. Z., 2006, "Desiccant Cooling Air Conditioning: A Review," Renewable and Sustainable Energy Review, Vol. 10, pp. 55-77. https://doi.org/10.1016/j.rser.2004.09.010
  2. Lee, J., K., Lee, D., Y. and Oh, M., D., 2010, "The Study of the Performance Enhancement by Operating Parameter of Low Temperature Regeneration Polymeric Desiccant Rotor," Proceeding of the SAREK Summer Annual Conference, pp. 690-694.
  3. Lee, J., J., Kim, S., H. and Kang, B., H., 2010, "An Experimental Study on the Effectiveness for Operating Conditions of a Desiccant Rotor," Proceeding of the SAREK Winter Annual Conference, pp. 550-557.
  4. Kang, B. H., Pi, C. H. and Chang, Y. S., 2012, "An Experimental Study on Development of Air Leakage Model and Performance Characteristics of a Desiccant Rotor," Trans. of the KSME B, Vol. 36, No. 1, pp. 37-45.
  5. Zheng, W. and Worek, W. M., 1993, "Numerical Simulation of Combined Heat and Mass Transfer Process in a Rotary Dehumidifier," Numerical Heat Transfer, Part A, Vol. 23, pp. 211-232. https://doi.org/10.1080/10407789308913669
  6. Lee, G., Lee, D. Y. and Kim, M. S., 2004, "Development of a Linearized Model and Verification of the Exact Solution for the Analysis of a Desiccant Dehumidifier," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 16, No. 9, pp. 811-819.
  7. Kodama, A., Hirayama, T., Motonobu, G., Tsutomu, H. and Critoph, R. E., 2001, "The Use of Psychrometric Charts for the Optimisation of a Thermal Swing Desiccant Wheel," Applied Thermal Engineering, Vol. 21, pp. 1657-1674. https://doi.org/10.1016/S1359-4311(01)00032-1
  8. White, S. D., Goldsworthy, M., Reece, R., Spillmann, T., Gorur, A. and Lee, D.-Y., 2011, "Characterization of Desiccant Wheels with Alternative Materials at Low Regeneration Temperatures," International Journal of Refrigeration, Vol. 34, pp. 1786-1791. https://doi.org/10.1016/j.ijrefrig.2011.06.012
  9. Han, H. T., 2001, "Mechanical Measurements," Goomibook, pp. 41-76.