• Title/Summary/Keyword: Reliability Physics

Search Result 191, Processing Time 0.028 seconds

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

Comparative Study for the Unloaded Quality Factors of High-Tc Superconductor-Dielectric Resonators Measured by Using S-parameter Circle-fit Method and Lorentzian-fit Method (S-parameter circle fit 방법과 Lorentzian fit 방법으로 측정된 고온초전도 유전체 공진기의 Unloaded Quality Factor 비교)

  • Kim, M.J.;Lee, J.H.;Park, E.K.;Yang, W.I.;Jung, H.S.;Choi, Y.O.;Lee, S.Y.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.143-151
    • /
    • 2007
  • Accurate measurements of the microwave surface resistance (Rs) of high temperature superconductor (HTS) films are important with regard to applications of HTS materials for wireless communications. As the surface resistance values of HTS films are usually extracted from the measured unloaded quality factor ($Q_0$) of resonators made of HTS films, it is essential to measure the resonator $Q_0$ with accuracy. The $TE_{011}\;mode\;Q_0$ of sapphire resonators with the endplates made of $YBa_2Cu_3O_{7-{\delta}}$(YBCO) film on $LaAlO_3$ is measured by using the S-parameter circle-fit method at a frequency of about 19.6 GHz and temperatures of 30 K to 90 K, which is compared with the measured values by using the Lorentzian-fit method. Good agreements are found between the two sets of $Q_0$ values measured by using the two different methods whether the resonator is used in a weak-coupling scheme or a strong-coupling scheme, showing reliability of both methods fur measuring the resonator $Q_0$ accurately. The $Q_0$ of sapphire resonators with a gap between the top plate and the rest of the resonator is also discussed.

  • PDF

Monitoring and Controlling Uniformity of Plasma Emission Intensity for IGZO Sputtering Process (IGZO박막 증착 공정에서 플라즈마 방출광 모니터링 및 플라즈마 균일도 제어)

  • Choi, Jinwoo;Hwang, Sang Hyuk;Kim, Woo Jae;Shin, Gi Won;Kwon, Heui Tae;Jo, Tae Hoon;Woo, Won Gyun;Cha, Sung Duk;An, Byung Chul;Park, Wan Woo;Do, Jae Chul;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.27-32
    • /
    • 2016
  • In recent years, various researches have been conducted to improve process yields in accordance with miniaturization of semiconductor. APC(Advanced Process Control) is considered one of the methods to increase in process yields. APC is a process control technology that maintains optimal process conditions and improves the reliability of results by controlling and formulating the relationship among the various process parameters and results. We built up an optical diagnostic system with a three-channel spectrometer. The system detects signals those represent the changes of specific emission peaks intensity versus each reference and converts it into MFC control signals to get back the changes to the reference state. Controlling the MFC continues until the specific peak intensity changes into the normal state. Through this device, we tested a APC automatically responding to process changes during the plasma process. We could control gas flow while sputtering process on going and improve uniformity of plasma intensity with this system. Finally, we have got results those enhance the plasma intensity non-uniformity to 7.7% from 15.5%. Also, found unexpected oxygen flow what is estimated to be come out from IGZO target.

GEANT4 characterization of the neutronic behavior of the active zone of the MEGAPIE spallation target

  • Lamrabet, Abdesslam;Maghnouj, Abdelmajid;Tajmouati, Jaouad;Bencheikh, Mohamed
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3164-3170
    • /
    • 2021
  • The increasing interest that GEANT4 is gaining nowadays, because of its special capabilities, prompted us to address its reliability in neutronic calculation for the realistic and complex spallation target MEGAPIE of the Paul Scherrer Institute of Switzerland. In this paper we have specifically addressed the neutronic characterization of the active zone of this target. Three physical quantities are evaluated: neutron flux spectra and total neutron fluxes on target's z-axis, and the neutron yield as a function of the target's altitude and radius. Comparison of the obtained results with those of the MCNPX reference code and some experimental measurements have confirmed the impact of the geometrical and proton beam models on the neutron fluxes. It has also allowed to reveal the intrinsic influence of the code type. The resulting differences reach a factor of ~2 for the beam model and 4-18% for the other parameters cumulated. The analysis of the neutron yield has led us to conclude that: 1) Increasing the productivity of the MEGAPIE target cannot be achieved simply by increasing the thickness of the target, if the irradiation parameters are not modified. 2) The size of the spallation area needs to be redefined more precisely.

Bringing 3D ICs to Aerospace: Needs for Design Tools and Methodologies

  • Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Three-dimensional integrated circuits (3D ICs), starting with memory cubes, have entered the mainstream recently. The benefits many predicted in the past are indeed delivered, including higher memory bandwidth, smaller form factor, and lower energy. However, 3D ICs have yet to find their deployment in aerospace applications. In this paper we first present key design tools and methodologies for high performance, low power, and reliable 3D ICs that mainly target terrestrial applications. Next, we discuss research needs to extend their capabilities to ensure reliable operations under the harsh space environments. We first present a design methodology that performs fine-grained partitioning of functional modules in 3D ICs for power reduction. Next, we discuss our multi-physics reliability analysis tool that identifies thermal and mechanical reliability trouble spots in the given 3D IC layouts. Our tools will help aerospace electronics designers to improve the reliability of these 3D IC components while not degrading their energy benefits.

Reliability Design Analysis for Underwater Buriend PBA Based on PoF (고장물리 기반 수중 매설형 PBA에 대한 신뢰성 설계 연구)

  • Kim, Ji-Young;Lee, Ki-Won;Yoon, Hong-Woo;Lee, Seung-Jin;Heo, Jun-Ki;Kwon, Hyeong-Ahn
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.280-288
    • /
    • 2017
  • Purpose: PBA buried in underwater requires high reliability because of its mission critical characteristic and harsh operational environment during its life cycle. Therefore, various reliability improvement activities are necessary. The defect on PBA manufacturing process have been studied, as a result, many activities and standards have been presented. However, there are less studies regarding failure pattern on physical features based on design. In this paper, we studied a possible failure patten based on physical features that is related with manufacturing process of PBA. And reliability improvement design based on PoF (Physical of Failure) were intruduced in this paper. Methods: A reliability prediction simulation were performed on the components A and B of the H system using Sherlock Software which is a PoF commercial tool from DFR solution. Solder fatigue and PTH fatigue analysis based on thermal cycling profiles and random vibration was analyzed on three earthquake response spectrum. Result: It was validated that life time and reliability improvement design through solder fatigue and PTH fatigue analysis in case of component. For compoenet B, random vibration fatigue was additionally analyzed and validated reliability for earthquakes profile. Conclusion: In design stage prior to manufacturing, PoF can be analyzed, and it is possible to make a reliability improvement/validated design using design data. This study can be applied in every design step and contribute to make more stable development product.

An Integrated System for Radioluminescence, Thermoluminescence and Optically Stimulated Luminescence Measurements

  • Park, Chang-Young;Park, Young-Kook;Chung, Ki-Soo;Lee, Jong-Duk;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.160-169
    • /
    • 2018
  • Background: This study aims to develop an integrated optical system that can simultaneously or selectively measure the signals obtained from radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL), which are luminescence phenomena of materials stimulated by radioactivity, heat, and light, respectively. The luminescence mechanism of various materials could be investigated using the glow curves of the luminescence materials. Materials and Methods: RL/TL/OSL integrated measuring system was equipped with a X-ray tube (50 kV, $200{\mu}A$) as an ionizing radiation source to irradiate the sample. The sample substrate was used as a heating source and was also designed to optically stimulate the sample material using various light sources, such as high luminous blue light emitting diode (LED) or laser. The system measured the luminescence intensity versus the amount of irradiation/stimulation on the sample for the purpose of measuring RL, TL and OSL sequentially or by selectively combining them. Optical filters were combined to minimize the interference of the stimulation light in the OSL signal. A long-pass filter (420 nm) was used for 470 nm LED, an ultraviolet-pass filter (260-390 nm) was used for detecting the luminescence of the sample by PM tube. Results and Discussion: The reliability of the system was evaluated using the RL/OSL characteristics of $Al_2O_3:C$ and the RL/TL characteristics of LiF:Mg,Cu,Si, which were used as dosimetry materials. The RL/OSL characteristics of $Al_2O_3:C$ showed relatively linear dose-response characteristics. The glow curve of LiF:Mg,Cu,Si also showed typical RL/OSL characteristics. Conclusion: The reliability of the proposed system was verified by sequentially measuring the RL characteristics of radiation as well as the TL and OSL characteristics by concurrent thermal and optical stimulations. In this study, we developed an integrated measurement system that measures the glow curves of RL/TL/OSL using universal USB-DAQs and the control program.

Reliability Evaluation and failure Analysis for High Voltage Ceramic Capacitor (고압 커패시터의 고장분석과 신뢰성 평가)

  • 김진우;송옥병;신승우;이희진;신승훈;유동수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.337-337
    • /
    • 2001
  • High voltage ceramic capacitors are widely applied in power electronic circuits, such as filters, snubbers, and resonant circuits, due to their excellent features of high voltage endurance and low aging. This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure nodes and failure mechanisms were identified in order to understand the failure physics in a component. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective closed-loop failure analysis. Also, the condition for dielectric breakdown was investigated. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal shock test as well as pressure cooker test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which, might cause electrical short in underlying circuitry, can occur during curing or thermal cycling. The results can be conveniently used to quickly identify defective lots, determine mean time to failure (MTTF) of each lot at the level of Inspection, and detect major changes in the vendors processes.

  • PDF

Human Reliability Analysis Using Reliability Physics Models (신뢰도 물리모델을 이용한 인간신뢰도분석 연구)

  • Moo-sung Jae
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • This paper presents a new dynamic human reliability analysis method and its application for quantifying the human error probabilities in implementing accident management actions. The action associated with implementation of the cavity flooding during a station blackout sequence is considered for its application. This method is based on the concept of the quantified correlation between the performance requirement and performance achievement. For comparisons of current HRA methods with the new method, the characteristics of THERP, HCR, and SLIM-MAUD, which m most frequency used method in PSAs, are discussed. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the performance achievement parameter. Meanwhile, the value of the performance requirement parameter is obtained from interviews. Based on these stochastic obtained, human error probabilities are calculated with respect to the various means and variances of the things. It is shown that this method is very flexible in that it can be applied to any kind of the operator actions, including the actions associated with the implementation of accident management strategies.