Browse > Article
http://dx.doi.org/10.1016/j.net.2021.05.002

GEANT4 characterization of the neutronic behavior of the active zone of the MEGAPIE spallation target  

Lamrabet, Abdesslam (Department of Physics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah)
Maghnouj, Abdelmajid (Department of Physics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah)
Tajmouati, Jaouad (Department of Physics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah)
Bencheikh, Mohamed (Department of Physics, Faculty of Sciences and Technology Mohammedia, Hassan II University of Casablanca)
Publication Information
Nuclear Engineering and Technology / v.53, no.10, 2021 , pp. 3164-3170 More about this Journal
Abstract
The increasing interest that GEANT4 is gaining nowadays, because of its special capabilities, prompted us to address its reliability in neutronic calculation for the realistic and complex spallation target MEGAPIE of the Paul Scherrer Institute of Switzerland. In this paper we have specifically addressed the neutronic characterization of the active zone of this target. Three physical quantities are evaluated: neutron flux spectra and total neutron fluxes on target's z-axis, and the neutron yield as a function of the target's altitude and radius. Comparison of the obtained results with those of the MCNPX reference code and some experimental measurements have confirmed the impact of the geometrical and proton beam models on the neutron fluxes. It has also allowed to reveal the intrinsic influence of the code type. The resulting differences reach a factor of ~2 for the beam model and 4-18% for the other parameters cumulated. The analysis of the neutron yield has led us to conclude that: 1) Increasing the productivity of the MEGAPIE target cannot be achieved simply by increasing the thickness of the target, if the irradiation parameters are not modified. 2) The size of the spallation area needs to be redefined more precisely.
Keywords
Neutron flux; Micro-detectors; MEGAPIE target; GEANT4; Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Panebianco, Neutronic characterization of the MEGAPIE target, Ann. Nucl. Energy 36 (3) (2009) 350-354, https://doi.org/10.1016/j.anucene.2008.12.013.   DOI
2 G. Li, G. Bentoumi, K. Hartling, et al., Validation of ENDF/B-VIII thermal neutron scattering data of heavy water by differential cross section measurements at various temperatures, Ann. Nucl. Energy 135 (2020) 106932, https://doi.org/10.1016/j.anucene.2019.07.034.   DOI
3 P. Arce, J.I. Lagares, L.J. Harkness-Brennan, et al., Gamos: a framework to do Geant4 simulations in different physics fields with an user-friendly interface, Nucl. Instrum. Methods A 735 (2014) 304-313, https://doi.org/10.1016/j.nima.2013.09.036.   DOI
4 Y. Malyshkin, I. Pshenichnov, I. Mishustin, et al., Monte Carlo modeling of spallation targets containing uranium and americium, Nucl. Instrum. Methods B 334 (2014) 8-17, https://doi.org/10.1016/j.nimb.2014.04.027.   DOI
5 I. Mishustin, Y. Malyshkin, I. Pshenichnov, et al., Possible production of neutron-rich heavy nuclei in fissile spallation targets, in: Nuclear Physics: Present and Future, W. Greiner, 2015, pp. 151-161, https://doi.org/10.1007/978-3-319-10199-6_15.   DOI
6 https://www.scientificlinux.org/.
7 Qt | Cross-platform software development for embedded & desktop. https://www.qt.io/.
8 J. Apostolakis, M. Asai, G. Cosmo, et al., Parallel Geometries in Geant4: foundation and recent enhancements, IEEE Nucl. Sci. Sympos. (2008) 883-886, https://doi.org/10.1109/NSSMIC.2008.4774535.   DOI
9 M. Dressel, Geometrical importance sampling in Geant4: from design to verification, CERN-OPEN-2003-048 (2003).
10 B. Andersson, G. Gustafson, B. Nilsson-Almqvist, et al., A model for low-pT hadronic reactions with generalizations to hadronnucleus and nucleusnucleus collisions, Nucl. Phys. B 281 (1987) 289-309, https://doi.org/10.1016/0550-3213(87)90257-4.   DOI
11 CLHEPda class library for high energy physics. http://projclhep.web.cern.ch/proj-clhep/.
12 A. Fasso, et al., FLUKA: status and prospective for hadronic applications, in: A. Kling, F. Barao, M. Nakagawa, et al. (Eds.), Proceedings of the Monte Carlo 2000 Conference, Springer, 2001, 2000, pp. 955-960.
13 K. Hartling, B. Ciungu, G. Li, et al., The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law, Nucl. Instrum. Methods Phys. Res. A 891 (2018) 25-31, https://doi.org/10.1016/j.nima.2018.02.053.   DOI
14 C. Latge, F. Groeschel, et al., Megapie spallation target: design, implementation and preliminary tests of the first prototypical spallation target for future ADS, in: Actinide and Fission Product Partitioning and Transmutation Ninth Information Exchange Meeting, Sep 2006, pp. 407-419. Nimes, France.
15 G.S. Bauer, M. Salvatores, G. Heusener, MEGAPIE a 1 MW pilot experiment for a liquid metal spallation target, J. Nucl. Mater. 296 (2001) 17, https://doi.org/10.1016/S0022-3115(01)00561-X.   DOI
16 F. Michel-Sendis, S. Chabod, A. Letourneau, et al., Neutronic performance of the MEGAPIE spallation target under high power proton beam, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (13) (2010) 2257-2271, https://doi.org/10.1016/j.nimb.2010.03.024.   DOI
17 D.B. Pelowitz (Ed.), MCNPX User's Manual Version 2.7.0, Los Alamos National Laboratory report, 2011. LA-CP-11-00438.
18 D. Strulab, G. Santin, D. Lazaro, et al., GATE (geant4 application for tomographic emission): a PET/SPECT general-purpose simulation platform, Nucl. Phys. B 125 (2003) 75-79, https://doi.org/10.1016/S0920-5632(03)90969-8.   DOI
19 J. Cugnon, J. Knoll, Y. Yariv, Event by event emission-pattern analysis of the intra-nuclear cascade, Phys. Lett. B 109 (3) (1982) 167-170.   DOI
20 M. Asai, M. Verderi, Experiences of the geant4 collaboration, 2017. https://epdep-sft.web.cern.ch/document/experiences-geant4-collaboration-input-makoto-asai-and-marc-verderi.
21 A.R. Junghans, et al., Projectilefragment yields as a probe for the collective enhancement in the nuclear level density, Nucl. Phys., A 629 (1998) 635-655.   DOI
22 H. Pi, An event generator for interactions between hadrons and nuclei-FRITIOF version 7.0, Comput. Phys. Commun. 71 (1992) 173-192, https://doi.org/10.1016/0010-4655(92)90082-a.   DOI
23 Y. Malyshkin, I. Pshenichnov, I. Mishustin, et al., Neutron production and energy deposition in fissile spallation targets studied with GEANT4 toolkit, Nucl. Instrum. Methods B 289 (2012) 79-90, https://doi.org/10.1016/j.nimb.2012.07.023.   DOI
24 F. Michel-Sendis, A. Letourneau, S.Panebianco, Neutronics of the MEGAPIE target: inner neutron flux characterization, ARIA 2008, 1st workshop on accelerator radiation induced activation, PSI, Switzerland.
25 L. Zanini, H.U. Aebersold, K. Berg, et al., Neutronic and nuclear post-test analysis of MEGAPIE, Part I, Chap 3, 08-04, PSI Bericht Nr. (2008), 1019-0643.
26 J. Cugnon, Proton-nucleus interactions at high energies, Nucl. Phys., A (462) (1987) 751-780.   DOI
27 D. Mancusi, A. Boudard, J. Cugnon, et al., Extension of the Liege intranuclear-cascade model to reactions induced by light nuclei, Phys. Rev. C 90 (2014), 054602, https://doi.org/10.1103/PhysRevC.90.054602.   DOI
28 S. Agostinelli, et al., GEANT4 - a simulation toolkit, Nucl. Instrum. Methods A. 506 (2003) 250, https://doi.org/10.1016/S0168-9002(03)01368-8.   DOI
29 A. Lamrabet, A. Maghnouj, J. Tajmouati, et al., Production threshold impact on a GEANT4 calculation of the power deposition in a fast domain: MEGAPIE spallation target, Nucl. Sci. Technol. 30 (2019) 75, https://doi.org/10.1007/s41365-019-0603-5.   DOI
30 P. L'Ecuyer, M. Mandjes, B. Tuffin, Importance sampling in rare event simulation, in: G. Rubino, B. Tuffin (Eds.), Rare Event Simulation Using Monte Carlo Methods 17-38, John Wiley & Sons, Ltd, 2009, 978-0-470-77269-0.
31 A. Boudard, J. Cugnon, J.-C. David, et al., New potentialities of the Liege intranuclear cascade model for reactions induced by nucleons and light charged particles, Phys. Rev. C 87 (2013), 014606, https://doi.org/10.1103/PhysRevC.87.014606.   DOI
32 D.P. Kroese, R.Y. Rubinstein, Monte-Carlo methods, WIREs Comp. Stat. 4 (1) (2012) 48-58, https://doi.org/10.1002/wics.194.   DOI
33 J. Cugnon, A. Boudard, J.-C. David, et al., Processes involving few degrees of freedom in the frame of Intranuclear Cascade approaches, Eur. Phys. J. Plus 131 (2016) 169, https://doi.org/10.1140/epjp/i2016-16169-4.   DOI
34 CERN/LHCC/95-70, GEANT: an object-oriented toolkit for simulation in HEP, LCRB status report/RD44, 1995.
35 Gamos. http://fismed.ciemat.es/GAMOS/.
36 GEANT4 user's guide for application developers, 2013. http://GEANT4.web.cern.ch/GEANT4/UserDocumentation/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.2/html/index.html.
37 ROOT a data analysis framework. https://root.cern.ch/.
38 G.W. McKinney, J.W. Durkee, J.S. Hendricks, M.R. James, D.B. Pelowitz, L.S. Waters, MCNPX 2.5.0 - New Features Demonstrated, American Nuclear Society, LaGrange Park, IL, 2005. LA-UR-04-8695.
39 J. Allison, et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270, https://doi.org/10.1109/TNS.2006.869826.   DOI
40 J. Apostolakis, et al., Geometry and physics of the GEANT4 toolkit for high and medium energy applications, Radiat. Phys. Chem. 78 (2009) 859, https://doi.org/10.1016/j.radphyschem.2009.04.026.   DOI
41 A. Lamrabet, A. Maghnouj, J. Tajmouati, et al., Assessment of the power deposition on the MEGAPIE spallation target using the GEANT4 toolkit, Nucl. Sci. Technol. 30 (2019) 54, https://doi.org/10.1007/s41365-019-0590-6.   DOI
42 G. Santin, D. Strul, D. Lazaro, et al., GATE: a GEANT4-based simulation platform for PET and SPECT integrating movement and time management, IEEE Trans. Nucl. Sci. 50 (2003) 1516-1521, https://doi.org/10.1109/TNS.2003.817974.   DOI
43 A. Fasso, A. Ferrari, P.R. Sala, Electron-photon transport in FLUKA: status, in: A. Kling, F. Barao, M. Nakagawa, et al. (Eds.), Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Springer, Berlin, 2001, pp. 159-164, https://doi.org/10.1007/978-3-642-18211-2_27.   DOI
44 Y. Malyshkin, et al., Modeling spallation reactions in tungsten and uranium targets with the GEANT4 toolkit, EPJ Web Conf. 21 (2012) 10006, https://doi.org/10.1051/epjconf/20122110006.   DOI
45 http://www-nds.iaea.org/spallations.
46 J. Benlliure, et al., Calculated nuclide production yields in relativistic collisions of fissile nuclei, Nucl. Phys. A 628 (3) (1998) 458-478, https://doi.org/10.1016/S0375-9474(97)00607-6.   DOI
47 S.L. Meo, M.A. Cortes-Giraldo, C. Massimi, et al., GEANT4 simulations of the n_TOF spallation source and their benchmarking, Eur. Phys. J. A 51 (2015) 160, https://doi.org/10.1140/epja/i2015-15160-6.   DOI
48 J.M. Quesada, V. Ivanchenko, A. Ivanchenko, et al., Recent developments in pre-equilibrium and de-excitation models in GEANT4, Prog. Nucl. Sci. Technol. 2 (2011) 936-941, https://doi.org/10.15669/pnst.2.936.   DOI
49 J.C. David, Spallation reactions: a successful interplay between modeling and applications, Eur. Phys. J. A 51 (2015) 68, https://doi.org/10.1140/epja/i2015-15068-1.   DOI
50 J.J. Gaimard, K.H. Schmidt, A reexamination of the Abrasion-Ablation model for the description of the nuclear Lowfragmention reaction, Nucl. Phys., A 531 (1991) 709-745.   DOI
51 G. Li, G. Bentoumi, Z. Tun, et al., Application of GEANT4 to the data analysis of thermal neutron scattering experiments, CNL Nucl. Rev. 7 (1) (2018) 11-17, https://doi.org/10.12943/CNR.2017.00002.   DOI
52 S. Chaboda, G. Fionib, A. Letourneaua, et al., Modelling of fission chambers in current mode - analytical approach, Nucl. Instrum. Methods A 566 (2006) 633-653, https://doi.org/10.1016/j.nima.2006.06.067.   DOI
53 S. CHABOD, developpement et mod elisation de chambres a fission pour les hauts flux, mise en application au RHF (ILL) et a MEGAPIE (PSI), These de doctorat, Universite; Paris XI. France, 2006.
54 H.W. Bertini, Low-energy intranuclear cascade calculations, Phys. Rev. 131 (4) (1963) 1801-1821.   DOI
55 R. Hofstadter, Electron scattering and nuclear structure, Rev. Mod. Phys. 28 (3) (1956) 214-254.   DOI
56 L. Zanini, A. Aiani, A neutron booster for the SINQ neutron source using thin fissile layers, in: International Atomic Energy Agency (IAEA) : IAEA, 2010.
57 P. Kaitaniemi, A. Boudard, S. Leray, et al., INCL intra-nuclear cascade and ABLA de-excitation models in GEANT4, Prog. Nucl. Sci. Technol. 2 (2011) 788-793, https://doi.org/10.15669/pnst.2.788.   DOI
58 A.R. Garcia, E. Mendoza, D. Cano-Ott, Validation of the Thermal Neutron Physics in GEANT4, Department of Energy, Madrid, 2013.