• Title/Summary/Keyword: Reinforcing Corrosion

Search Result 258, Processing Time 0.031 seconds

A Experimental Study on Evaluation of Anti-Corrosion Performance of Reinforced Concrete with Chloride and Inhibitor Using Tafel Extrapolation Method (타펠 외삽법을 이용한 NaCl 및 LiNO2가 첨가된 철근 콘크리트의 방식성능 평가에 관한 실험적 연구)

  • Park, Dong-Jin;Park, Jang-Hyun;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.7-8
    • /
    • 2017
  • Corrosion of reinforced concrete embedded in concrete is a deterioration phenomenon due to intrusion of embodied or Airborne chloride ions. Corrosion of a embedded steel increases the volume of the rebar and causes damage to the structure such as cracking and peeling of the concrete. This causes penetration of various corrosive factors and accelerates the corrosion of reinforcing bars, which has a serious effect on the durability of the structure. Researches on the corrosion phenomenon of these rebars by electrochemical methods have been carried out for a long time, but it is a lack of research in Korea. Therefore, in this study, one of electrochemical experimental methods, Tafel extrapolation method, was used to evaluate the performance of reinforcing bars according to the amount of NaCl and LiNO2 added to concrete.

  • PDF

An Experimental Study on the Crack Pattern of Concrete by Corrosion of Steel Reinforcing (콘크리트의 균열발생 거동에 관한 실험적 연구)

  • Paik, Min-Su;Kim, Youn-Kyoung;Lee, Young-Do;Lim, Nam-Gi;Choi, Eung-Kyoo;Kim, Young-Hoi;Chung, Lan;Jung, Sang-jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.235-240
    • /
    • 1997
  • The purpose of this experiment is to verify processing crack direction and state by the corrosion of electrifying re-bar in the salt water. The result of this experiment is the fact that the first crack appear on the surface of water-because of supplying of oxygen and water. The crack processing is on a surface to be contacted by air and to bottom as mainly the vertical direction from a surface of water. The crack by corrosion of steel reinforcing is emerged by the inside of concrete rather than surface concrete.

  • PDF

Study on the Corrosionproofing in Concrete by Cathodic Protection (전위변화에 의한 콘크리트내의 철근방식에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.213-220
    • /
    • 1999
  • The purpose of this study is to apply cathodic protection to reinforced concrete structure and provide fundamental data to prevent the corrosion. The theory of cathodic protection of steel in concrete is to apply sufficient direct current so that corroding anodes on the steel are prevented from discharging ions. Two methods are used to supply the external current. In one, the protected metal is the cathode by connecting it to a more active metal. In the second, an external direct current power source supplies the current. The first is the sacrificial-anode system and the second the impressed-current system. The study results showed that the corrosion of the reinforcing steel in concrete could be enormously decreased by using protective current. The sacrificial anode and concrete nave to be adhered closely each in order to prevent the corrosion of reinforcing steel.

  • PDF

Ultimate flexural and shear capacity of concrete beams with corroded reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.347-363
    • /
    • 2007
  • Assessment of structural behaviour of corrosion affected structures is an important issue, which would help in making certain decisions pertaining to the inspection, repair, strengthening, replacement and demolition of such structures. The paper presents formulations to predict the loss of weight and the loss of cross-sectional area of the reinforcing bar undergoing corrosion based on the earlier study carried out by the present authors (Bhargava et al. 2006). These formulations have further been used to analytically evaluate the ultimate bending moment and ultimate shear force capacity of the corroded concrete beams. Results of the present study indicate that, a considerably good agreement has been observed between the experimental and the analytically predicted values for the weight loss and reduction in radius of the corroded reinforcing bars. A considerably good agreement has also been observed between the experimental and the analytically predicted values of ultimate bending moment and ultimate shear force capacity for the corroded concrete beams.

Estimation of Critical Chloride Content for Corrosion of Reinforcing Steel in Concrete by Field Exposure Experiment (현장 폭로실험에 의한 콘크리트 중 철근의 부식 임계 염화물량 평가)

  • Yu, Kyung-Geun;Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Kim, Jee-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.585-588
    • /
    • 2008
  • To predict the service life of reinforced concrete structures exposed to chloride environment, quantitative measures of material properties such as the critical chloride content for corrosion in concrete and the diffusion coefficient of chloride ions of concrete and the surface chloride content of the concrete are essential. However, it should be noted that they are influenced by several factors such as concrete mix proportions, cement type, and environmental conditions, etc. Thus, the purpose of this research is to estimate more actually the critical chloride content for corrosion of the reinforcing steel in concrete by field exposure experiment. For this purpose, the prism concrete test specimens were made for water-cement(W/C) ratios of 31%, 42%, 50%, and 70%, and then the field exposure experiment for them were conducted at Youngduk of the east coast for about 3 years. During the test, corrosion monitoring by half cell potential method was carried out to detect the time to initiation of corrosion for test specimens and its chloride content was evaluated by breaking the concrete test specimens when corrosion of the reinforcing steel in concrete was perceived. It was observed from the test results that the critical chloride content for corrosion of reinforcing steel in concrete would be dependent on W/C ratio and almost irrespective of concrete cover.

  • PDF

Prediction Models for Corrosion of Reinforcing Bars (철근의 부식 예측 모델에 관한 연구)

  • 김도겸;이종석;고경택;이장화;송영철;조명석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.739-742
    • /
    • 1999
  • A reinforcement corrosion prediction model was proposed using the results from accelerated testing and mathematical equation from the Fick's 2nd law for chloride-induced corrosion of reinforcement in concrete. The input data included the chloride concentration, mix characteristics of concrete, and environmental conditions. This model can be used to predict the chloride concentration pertaining to corrosion time and loading age for marine concrete structures. This model can also be used to predict the service life.

  • PDF

Influence of different fatigue loads and coating thicknesses on service performance of RC beam specimens with epoxy-coated reinforcement

  • Wang, Xiao-Hui;Gao, Yang;Gao, Run-Dong;Wang, Jing;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.243-256
    • /
    • 2017
  • Epoxy-coated reinforcing bars are widely used to protect the corrosion of the reinforcing bars in the RC elements under their in-service environments and external loads. In most field surveys, it was reported that the corrosion resistance of the epoxy-coated reinforcing bars is typically better than the uncoated bars. However, from the experimental tests conducted in the labs, it was reported that, under the same loads, the RC elements with epoxy-coated reinforcing bars had wider cracks than the elements reinforced with the ordinary bars. Although this conclusion may be true considering the bond reduction of the reinforcing bar due to the epoxy coating, the maximum service loads used in the experimental research may be a main reason. To answer these two phenomena, service performance of 15 RC beam specimens with uncoated and epoxy-coated reinforcements under different fatigue loads was experimentally studied. Influences of different coating thicknesses of the reinforcing bars, the fatigue load range and load upper limit as well as fatigue load cycles on the mechanical performance of RC test specimens are discussed. It is concluded that, for the test specimens subjected to the comparatively lower load range and load upper limit, adverse effect on the service performance of test specimens with thicker epoxy-coated reinforcing bars is negligible. With the increments of the coating thickness and the in-service loading level, i.e., fatigue load range, load upper limit and fatigue cycles, the adverse factor resulting from the thicker coating becomes noticeable.

Effect of Composite Re-bars Embedded in Concrete on Surface Electrical Resistivity of Concrete (콘크리트내 섬유복합체 보강근이 표면저항치에 미치는 영향)

  • Moon, Do Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.212-218
    • /
    • 2011
  • The effect of composite reinforcing bars on surface electrical resistivity of concrete was investigated through experimental program. The resistivity was measured by Wenner method using an equipment with 4 probe. Ordinary steel, GFRP, and CFRP reinforcing bars produced domestically were used and a specimen with no reinforcement was tested for the comparison. This investigation is motivated from the fact that measured value of resistivity of concrete is significantly affected by details of steel reinforcements, such as location, depth and direction of the internal steel reinforcement. These results could be valuable data for evaluation of corrosion degree of concrete structures reinforced or strengthened by the composite reinforcing bars.

The Corrosion Behavior of Rebar Embedded in Concrete With Chloride. (염화물 혼입에 따른 철근의 부식 거동)

  • Kim, Myung-Yu;Kim, Il-Sun;Jin, Sang-Ho;Yang, Eun-Ik;Lee, Sung-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1069-1072
    • /
    • 2008
  • As embedded reinforcing suffer from corrosion process, the bond strength and stiffness are reduced, and the structure proceed, eventually, to the deterioration of the concrete, shortening the service life of concrete structures rapidly. In order to deal with these problems, a multitude of researches have been carried out up to this date to evaluate the bond characteristics of RC members, i.e. by artificially inducing rapid corrosion of the reinforcing bar. These artificial corrosion methods, however, could not represent the real condition, resulting in the possibility of overestimation for the RC members in real situation. Accordingly, the purpose of this paper is to investigate the difference in the bond characteristics for RC members corroded by different corrosion methods (artificial rapid method, natural method). For the case of natural corrosion, the brittle failure was observedeven for the case of the area ofcorrosion of 50%. And, the bond strength decreased by about 10% or more for the caseofspecimens with the area of corrosion of 80% or above. Especially, the deterioration of concrete starts at the state of low corrosion level for the case of natural corrosion. Thus, the safety of RC members must be assessed and evaluated more carefully for the naturally corroded members than for the RC concrete members corroded rapidly by artificial method.

  • PDF

An Experimental Study on the Prediction of Corrosion Resistance of Reinforced Concrete Using Accelerated Potentiometric Corrosion Test (전위차 부식촉진법을 이용한 철근 콘크리트의 내부식성 예측을 위한 실험 연구)

  • 오병환;조윤구;차수원;정원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.71-76
    • /
    • 1996
  • Recently, large scale concrete structures exposed to severe environment are increasingly built in various locations. The corrosion may affect severely the durability and service life of such a concrete structure. It is, therefore, necessary to develop durable concrete to enhance the corrosion resistance. The corrosion resistance of concrete can be identified through accelerated corrosion test. The purpose of the present paper is, therefore, to devise a reasonable and accurate method to predict the amount of corrosion of reinforcing steels. The proposed method which is basically based on the concept of Faraday's Law, determines the corroded amount of a re-bar according to accelerated corrosion time. The corrosion is accelerated by employing the potentiometric corrosion test arrangement. The effects of admixtures in concrete including fly ash and silica fume have been also studied to explore the relative corrosion resistance of concrete.

  • PDF