• Title/Summary/Keyword: Regulator Activity

Search Result 390, Processing Time 0.029 seconds

IscR Modulates Catalase A (KatA) Activity, Peroxide Resistance, and Full Virulence of Pseudomonas aeruginosa PA14

  • Kim, Seol-Hee;Lee, Bo-Young;Lau, Gee W.;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1520-1526
    • /
    • 2009
  • We have identified the iscR (PA3815) gene encoding an iron-sulfur cluster assembly regulator homolog as one of the genes required for peroxide resistance in Pseudomonas aeruginosa PA14. Here, we present the phenotypic characterization of an iscR deletion mutant in terms of KatA expression, stress responses, and virulence. The iscR null mutant exhibited reduced KatA activity at the posttranslational level, hypersensitivity to hydrogen peroxide, and virulence-attenuation in Drosophila melanogaster and mouse peritonitis models. These phenotypes were fully restored by multicopy-based expression of katA. These results suggest that the requirement of IscR in P. aeruginosa is related to the proper activity of KatA, which is crucial for peroxide resistance and full virulence of this bacterium.

Inhibition of Overexpressed CDC-25.1 Phosphatase Activity by Flavone in Caenorhabditis elegans

  • Kim, Koo-Seul;Kawasaki, Ichiro;Chong, Youhoon;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.345-350
    • /
    • 2009
  • We previously reported that flavone induces embryonic lethality in Caenorhabditis elegans, which appeared to be the result of cell cycle arrest during early embryogenesis. To test this possibility, here we examined whether flavone inhibits the activity of a key cell cycle regulator, CDC-25.1 in C. elegans. A gain-of-function cdc-25.1 mutant, rr31, which exhibits extra cell divisions in intestinal cells, was used to test the inhibitory effects of flavone on CDC-25 activity. Flavone inhibited the extra cell divisions of intestinal cells in rr31, and modifications of flavone reduced the inhibitory effects. The inhibitory effects of flavone on CDC-25.1 were partly, if not completely, due to transcriptional repression.

ESTABLISHMENT OF IN VITRO BIOASSAY FOR TRANSFORMING GROWTH FACTOR (TGF-$\varepsilon$)

  • Kim, Mi-Sung;Ahn, Seong-Min;Aree Moon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.201-201
    • /
    • 2001
  • Transforming growth factor- $\beta$ (TGF- $\beta$), a hormonally active polypeptide found in normal and transformed tissue, is a potent regulator of cell growth and differentiation. In this study, we wished to establish an in vitro bioassay system to seek the most sensitive method that can measure TGF- $\beta$ activity.(omitted)

  • PDF

Protein Tyrosine Phosphatase 1B Activity of Quercetin from Houttuynia Cordata (어성초로부터 분리된 Quercetin의 Protein Tyrosine Phosphatase 1B 활성)

  • Choi, Hwa-Jung;Bae, Eun-Young;No, Yong-Ju;Baek, Seung-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1532-1536
    • /
    • 2008
  • Quercetin which isolated form the roots of Houttuynia cordata. was determined on the basis of IR, ID and 2D NMR specta by direct comparison with authentic compounds. Protein tyrosine phophatase 1B (PTP1B) is thought to be a negative regulator in insulin signal-transduction pathway. Insulin-resistance by the activation of PTP1B is a hallmark of both type 2 diabetes and obesity. Thus, the compound inhibiting PTP1B can improve insulin resistance and can be effective in treating type 2 diabetes and obesity. Quercetin which measured the inhibitory activity against PTP1B was 92.1% inhibition in the 30 ${\mu}g$/mL, 83.4% inhibition in the 6 ${\mu}g$/mL and 76.5% inhibition in the 3 ${\mu}g$/mL. These results suggest that quercetin retains a potential PTP1B activity.

Sulfhydryl-Related and Phenylpropanoid-Synthesizing Enzymes in Arabidopsis thaliana Leaves after Treatments with Hydrogen Peroxide, Heavy Metals, and Glyphosate

  • Park, Keum-Nam;Sa, Jae-Hoon;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • Three-week grown Arabidopsis thaliana leaves were wounded by cutting whole leaves with a razor blade into pieces (about$3\;mm\;{\times}\;3\;mm$) submerged in various solutions, and incubated in a growth chamber for 24 h. We measured and compared activities of several enzymes such as phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), thioredoxin, thioredoxin reductase, thioltransferase, glutathione reductase, and $NADP^+$ -malate dehydrogenase. PAL activity was decreased in $HgCl_2$-, $CdCl_2$-, and glyphosate-treated leaf slices, and could not be detected after treatment with $CdCl_2$. TAL activity was found to be maximal in the $CdCl_2$-treated leaf slices. Activity of thioredoxin, a small protein known as a cofactor of ribonucleotide reductase and a regulator of photosynthesis, was significantly increased in the $CdCl_2$-treated leaf slices, while thioredoxin reductase activity was maximal in the $HgCl_2$-treated leaf slices. Thioltransferase and glutathione reductase activities were significantly decreased in the $HgCl_2$-treated leaf slices. $NADP^+$ -malate dehydrogenase activity remained relatively constant after the chemical treatments. Our results strongly indicate that sulfhydryl-related and phenylpropanoid-synthesizing enzyme activities are affected by chemical treatments such as hydrogen peroxide, heavy metals, and glyphosate.

  • PDF

Screening of Protein Tyrosine Phosphatase 1B Inhibitory Activity from Some Vietnamese Medicinal Plants

  • Hoang, Duc Manh;Trung, Trinh Nam;Hien, Phan Thi Thu;Ha, Do Thi;Van Luong, Hoang;Lee, Myoung-Sook;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.239-244
    • /
    • 2010
  • Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling, has served as a potential drug target for the treatment of type 2 diabetes. The MeOH extracts of twenty-nine medicinal plants, traditionally used in Vietnam as anti-diabetes agents, were investigated for PTP1B inhibitory activity in vitro. The results indicated that, most materials showed moderate to strong inhibitory activity with $IC_{50}$ values ranging from $3.4\;{\mu}g/mL$ to $35.1\;{\mu}g/mL$; meanwhile, eleven extracts (37.9%) could demonstrate PTP1B activity with $IC_{50}$ values less than $15.5\;{\mu}g/mL$; sixteen extracts (55.2%) could demonstrate PTP1B activity with $IC_{50}$ values ranging from $15.5\;{\mu}g/mL$ to $35.1\;{\mu}g/mL$. The study may provide a proof, at least in a part, for the ethno-medical use in diabetes disease of these plants.

Role of glutamine synthetase as as regulator of nitrogenase in rhodopseudomonas sphaeroides D-230 (광합성 세균에 있어서의 질소고정효소 합성 조절자로서의 glutamine synthetase의 역할)

  • 이혜주
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.113-118
    • /
    • 1986
  • Optimum temperature and pH of glutamine synthetase activity (E.C. 3.6.1.2.) of R. sphaeroides D-230 was $35^{\circ}C$ and 6.8, respectively. The adenylated state of GS in R. sphaeroides D-230 was stabilized by addition of 0.2mg/ml of cethyltrimethylammoniumbromide. Valine, histidine, proline, isoleucine, and lysine were good nitrogen source for the growth of R. sphaeroides D-230. The growth of R. sphaeroides D-230 in $N_2,\;NaNO_3\;or\;NH_4Cl$ as sole nitrogen source was lower than in any otherculture conditions. GS activity was inhibited, more or less, by various amino acid. THe relative inhibition rate of the enzyme by added 7mM arginine, $NH_4Cl,\;N_2,\;and\;NaNO_3$ was 63.8%, 26.79%, 6.24%, and 10.64%, drespectively. THe hydrogen evolution of R. sphaeroides D-230 grown in N-limited media was inhibited by 0.1mM MSX, irreversible GS inhibitor. GS activity was completely inhibited by 1.0mM MSX but ammonia released maximally at the same concentration of MSX. Ammonia release by added MSX was increased up to 1.0mM MS, but decreased above 1.0mM MSX. It is probably due to inhibition of nitrogenase actixity by MSX. Nitrogenase activity was not inhibited at low concentration of MSX. These results suggests that the inhibition of nitrogenase activity by ammonia is mediated by products of ammonia assimilation rather than by ammonia itself.

  • PDF

Identification of the Vibrio vulnificus fexA Gene and Evaluation of its Influence on Virulence

  • JU HYUN-MOK;HWANG IN-GYUN;WOO GUN-JO;KIM TAE SUNG;CHOI SANG HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1337-1345
    • /
    • 2005
  • Vibrio vulnificus is the causative agent of foodborne diseases such as gastroenteritis and life-threatening septicemia. Microbial pathogenicity is a complex phenomenon in which expression of numerous virulence factors is frequently controlled by a common regulatory system. In the present study, a mutant exhibiting decreased cytotoxic activity toward intestinal epithelial cells was screened from a library of V. vulnificus mutants constructed by a random transposon mutagenesis. By a transposon-tagging method, an open reading frame, fexA, a homologue of Escherichia coli areA, was identified and cloned. The nucleotide and deduced amino acid sequences of the fexA were analyzed, and the amino acid sequence of FexA from V. vulnificus was $84\%\;to\;97\%$ similar to those of AreA, an aerobic respiration control global regulator, from other Enterobacteriaceae. Functions of the FexA were assessed by the construction of an isogenic mutant, whose fexA gene was inactivated by allelic exchanges, and by evaluating its phenotype changes in vitro and in mice. The disruption of fexA resulted in a significant alteration in growth rate under aerobic as well as anaerobic conditions. When compared to the wild-type, the fexA mutant exhibited a substantial decrease in motility and cytotoxicity toward intestinal epithelial cell lines in vitro. Furthermore, the intraperitoneal $LD_{50}$ of the fexA mutant was approximately $10^{1}-10^{2}$ times higher than that of parental wild-type. Therefore, it appears that FexA is a novel global regulator controlling numerous genes and contributing to the pathogenesis as well as growth of V. vulnificus.

In vivo Functional Analysis of γ-butyrolactone Autoregulator Receptor Gene (scaR) in Streptomyces clavuligerus (Streptomyces clavuligerus의 γ-butyrolactone autoregulator receptor 유전자에 대한 in vivo 기능 분석)

  • Kang Su-Jin;Lee Chang-Kwon;Choi Sun-Uk;Kim Hyun-Soo;Hwang Yong-Il
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • A $\gamma-butyrolactone$ autoregulator receptor has a common activity as DNA-binding transcriptional repressors controlling secondary metabolism and/or morphological differentiation in Streptomyces. A gene (scaR) encoding it was cloned from Streptomyces cravuligerus, a clavulanic acid producer, and was in vitro characterized in a previous report. In this study to clarify the in vivo function of ScaR, a $\gamma-butyrolactone$ autoregulator receptor of Streptomyces clavuligerus, we constructed a scaR-deleted strain by means of homologous recombination. No difference in morphology was found between the wild-type strain and the scaR-disruptant, but the scaR-disruptant showed higher clavulanic acid production. This indicates that the ScaR in S. clavuligerus acts as a negative regulator of the biosynthesis of clavulanic acid, but plays no role in morphological differentiation.

T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis

  • Kim, Sumi;Lee, Nari;Park, Eui-Soon;Yun, Hyeongseok;Ha, Tae-Uk;Jeon, Hyoeun;Yu, Jiyeon;Choi, Seunga;Shin, Bongjin;Yu, Jungeun;Rhee, Sang Dal;Choi, Yongwon;Rho, Jaerang
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator in adipogenesis. PPARγ forms a heterodimer with another nuclear receptor, retinoid X receptor (RXR), to form an active transcriptional complex, and their transcriptional activity is tightly regulated by the association with either coactivators or corepressors. In this study, we identified T-cell death-associated gene 51 (TDAG51) as a novel corepressor of PPARγ-mediated transcriptional regulation. We showed that TDAG51 expression is abundantly maintained in the early stage of adipogenic differentiation. Forced expression of TDAG51 inhibited adipocyte differentiation in 3T3-L1 cells. We found that TDAG51 physically interacts with PPARγ in a ligand-independent manner. In deletion mutant analyses, large portions of the TDAG51 domains, including the pleckstrin homology-like, glutamine repeat and proline-glutamine repeat domains but not the proline-histidine repeat domain, are involved in the interaction with the region between residues 140 and 506, including the DNA binding domain, hinge, ligand binding domain and activation function-2 domain, in PPARγ. The heterodimer formation of PPARγ-RXRα was competitively inhibited in a ligand-independent manner by TDAG51 binding to PPARγ. Thus, our data suggest that TDAG51, which could determine adipogenic cell fate, acts as a novel negative regulator of PPARγ by blocking RXRα recruitment to the PPARγ-RXRα heterodimer complex in adipogenesis.