Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0143

T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis  

Kim, Sumi (Department of Microbiology and Molecular Biology, Chungnam National University)
Lee, Nari (Department of Microbiology and Molecular Biology, Chungnam National University)
Park, Eui-Soon (Department of Microbiology and Molecular Biology, Chungnam National University)
Yun, Hyeongseok (Department of Microbiology and Molecular Biology, Chungnam National University)
Ha, Tae-Uk (Department of Microbiology and Molecular Biology, Chungnam National University)
Jeon, Hyoeun (Department of Microbiology and Molecular Biology, Chungnam National University)
Yu, Jiyeon (Department of Microbiology and Molecular Biology, Chungnam National University)
Choi, Seunga (Department of Microbiology and Molecular Biology, Chungnam National University)
Shin, Bongjin (Department of Microbiology and Molecular Biology, Chungnam National University)
Yu, Jungeun (Department of Microbiology and Molecular Biology, Chungnam National University)
Rhee, Sang Dal (Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology)
Choi, Yongwon (Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine)
Rho, Jaerang (Department of Microbiology and Molecular Biology, Chungnam National University)
Abstract
The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator in adipogenesis. PPARγ forms a heterodimer with another nuclear receptor, retinoid X receptor (RXR), to form an active transcriptional complex, and their transcriptional activity is tightly regulated by the association with either coactivators or corepressors. In this study, we identified T-cell death-associated gene 51 (TDAG51) as a novel corepressor of PPARγ-mediated transcriptional regulation. We showed that TDAG51 expression is abundantly maintained in the early stage of adipogenic differentiation. Forced expression of TDAG51 inhibited adipocyte differentiation in 3T3-L1 cells. We found that TDAG51 physically interacts with PPARγ in a ligand-independent manner. In deletion mutant analyses, large portions of the TDAG51 domains, including the pleckstrin homology-like, glutamine repeat and proline-glutamine repeat domains but not the proline-histidine repeat domain, are involved in the interaction with the region between residues 140 and 506, including the DNA binding domain, hinge, ligand binding domain and activation function-2 domain, in PPARγ. The heterodimer formation of PPARγ-RXRα was competitively inhibited in a ligand-independent manner by TDAG51 binding to PPARγ. Thus, our data suggest that TDAG51, which could determine adipogenic cell fate, acts as a novel negative regulator of PPARγ by blocking RXRα recruitment to the PPARγ-RXRα heterodimer complex in adipogenesis.
Keywords
adipocyte differentiation; adipogenesis; pleckstrin homology-like domain A family; peroxisome proliferator-activated receptor gamma; retinoid X receptor alpha; T-cell death-associated gene 51;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmadian, M., Suh, J.M., Hah, N., Liddle, C., Atkins, A.R., Downes, M., and Evans, R.M. (2013). PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557-566.   DOI
2 Armoni, M., Harel, C., Karni, S., Chen, H., Bar-Yoseph, F., Ver, M.R., Quon, M.J., and Karnieli, E. (2006). FOXO1 represses peroxisome proliferatoractivated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J. Biol. Chem. 281, 19881-19891.   DOI
3 Basseri, S., Lhotak, S., Fullerton, M.D., Palanivel, R., Jiang, H., Lynn, E.G., Ford, R.J., Maclean, K.N., Steinberg, G.R., and Austin, R.C. (2013). Loss of TDAG51 results in mature-onset obesity, hepatic steatosis, and insulin resistance by regulating lipogenesis. Diabetes 62, 158-169.   DOI
4 Burton, G.R., Nagarajan, R., Peterson, C.A., and McGehee, R.E., Jr. (2004). Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. Gene 329, 167-185.   DOI
5 Chandra, V., Huang, P., Hamuro, Y., Raghuram, S., Wang, Y., Burris, T.P., and Rastinejad, F. (2008). Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456, 350-356.   DOI
6 Chen, Y., Takikawa, M., Tsutsumi, S., Yamaguchi, Y., Okabe, A., Shimada, M., Kawase, T., Sada, A., Ezawa, I., Takano, Y., et al. (2018). PHLDA1, another PHLDA family protein that inhibits Akt. Cancer Sci. 109, 3532-3542.   DOI
7 Dowell, P., Otto, T.C., Adi, S., and Lane, M.D. (2003). Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J. Biol. Chem. 278, 45485-45491.   DOI
8 Elberg, G., Gimble, J.M., and Tsai, S.Y. (2000). Modulation of the murine peroxisome proliferator-activated receptor γ2 promoter activity by CCAAT/enhancer-binding proteins. J. Biol. Chem. 275, 27815-27822.   DOI
9 Fan, W., Imamura, T., Sonoda, N., Sears, D.D., Patsouris, D., Kim, J.J., and Olefsky, J.M. (2009). FOXO1 transrepresses peroxisome proliferatoractivated receptor gamma transactivation, coordinating an insulininduced feed-forward response in adipocytes. J. Biol. Chem. 284, 12188-12197.   DOI
10 Fearon, A.E., Carter, E.P., Clayton, N.S., Wilkes, E.H., Baker, A.M., Kapitonova, E., Bakhouche, B.A., Tanner, Y., Wang, J., Gadaleta, E., et al. (2018). PHLDA1 mediates drug resistance in receptor tyrosine kinase-driven cancer. Cell Rep. 22, 2469-2481.   DOI
11 Gehring, W.J., Affolter, M., and Burglin, T. (1994). Homeodomain proteins. Annu. Rev. Biochem. 63, 487-526.   DOI
12 Hauser, S., Adelmant, G., Sarraf, P., Wright, H.M., Mueller, E., and Spiegelman, B.M. (2000). Degradation of the peroxisome proliferator-activated receptor gamma is linked to ligand-dependent activation. J. Biol. Chem. 275, 18527-18533.   DOI
13 Hayashida, N., Inouye, S., Fujimoto, M., Tanaka, Y., Izu, H., Takaki, E., Ichikawa, H., Rho, J., and Nakai, A. (2006). A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J. 25, 4773-4783.   DOI
14 Hossain, G.S., Lynn, E.G., Maclean, K.N., Zhou, J., Dickhout, J.G., Lhotak, S., Trigatti, B., Capone, J., Rho, J., Tang, D., et al. (2013). Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression. J. Am. Heart Assoc. 2, e000134.   DOI
15 Hu, E., Kim, J.B., Sarraf, P., and Spiegelman, B.M. (1996). Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274, 2100-2103.   DOI
16 Iankova, I., Petersen, R.K., Annicotte, J.S., Chavey, C., Hansen, J.B., Kratchmarova, I., Sarruf, D., Benkirane, M., Kristiansen, K., and Fajas, L. (2006). Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis. Mol. Endocrinol. 20, 1494-1505.   DOI
17 Kamata, M., Okitsu, Y., Fujiwara, T., Kanehira, M., Nakajima, S., Takahashi, T., Inoue, A., Fukuhara, N., Onishi, Y., Ishizawa, K., et al. (2014). GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells. Haematologica 99, 1686-1696.   DOI
18 Jiao, H.W., Jia, X.X., Zhao, T.J., Rong, H., Zhang, J.N., Cheng, Y., Zhu, H.P., Xu, K.L., Guo, S.Y., Shi, Q.Y., et al. (2016). Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression. Immunopharmacol. Immunotoxicol. 38, 124-130.   DOI
19 Johnson, E.O., Chang, K.H., de Pablo, Y., Ghosh, S., Mehta, R., Badve, S., and Shah, K. (2011). PHLDA1 is a crucial negative regulator and effector of Aurora A kinase in breast cancer. J. Cell Sci. 124, 2711-2722.   DOI
20 Juge-Aubry, C., Pernin, A., Favez, T., Burger, A.G., Wahli, W., Meier, C.A., and Desvergne, B. (1997). DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5'-flanking region. J. Biol. Chem. 272, 25252-25259.   DOI
21 Kim, J.I., Kaufman, R.J., Back, S.H., and Moon, J.Y. (2019). Development of a reporter system monitoring regulated intramembrane proteolysis of the transmembrane bZIP transcription factor ATF6alpha. Mol. Cells 42, 783-793.   DOI
22 Kim, T.H., Kim, H., Park, J.M., Im, S.S., Bae, J.S., Kim, M.Y., Yoon, H.G., Cha, J.Y., Kim, K.S., and Ahn, Y.H. (2009). Interrelationship between liver X receptor alpha, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver. J. Biol. Chem. 284, 15071-15083.   DOI
23 Kroker, A.J. and Bruning, J.B. (2015). Review of the structural and dynamic mechanisms of PPARgamma partial agonism. PPAR Res. 2015, 816856.   DOI
24 Nagai, M.A. (2016). Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and cancer. Biomed. Rep. 4, 275-281.   DOI
25 Lefterova, M.I. and Lazar, M.A. (2009). New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107-114.   DOI
26 Li, G., Wang, X., Hibshoosh, H., Jin, C., and Halmos, B. (2014). Modulation of ErbB2 blockade in ErbB2-positive cancers: the role of ErbB2 Mutations and PHLDA1. PLoS One 9, e106349.   DOI
27 Miard, S. and Fajas, L. (2005). Atypical transcriptional regulators and cofactors of PPARgamma. Int. J. Obes. (Lond.) 29 Suppl 1, S10-S12.   DOI
28 Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W.H., 3rd, Arden, K.C., and Accili, D. (2003). The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4, 119-129.   DOI
29 Nishizawa, H., Yamagata, K., Shimomura, I., Takahashi, M., Kuriyama, H., Kishida, K., Hotta, K., Nagaretani, H., Maeda, N., Matsuda, M., et al. (2002). Small heterodimer partner, an orphan nuclear receptor, augments peroxisome proliferator-activated receptor gamma transactivation. J. Biol. Chem. 277, 1586-1592.   DOI
30 Park, C.G., Lee, S.Y., Kandala, G., Lee, S.Y., and Choi, Y. (1996). A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death. Immunity 4, 583-591.   DOI
31 Park, E.S., Choi, S., Shin, B., Yu, J., Hwang, J.M., Yun, H., Chung, Y.H., Choi, J.S., Choi, Y., and Rho, J. (2015). Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction. J. Biol. Chem. 290, 9660-9673.   DOI
32 Qiao, L. and Shao, J. (2006). SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J. Biol. Chem. 281, 39915-39924.   DOI
33 Park, E.S., Kim, J., Ha, T.U., Choi, J.S., Soo Hong, K., and Rho, J. (2013). TDAG51 deficiency promotes oxidative stress-induced apoptosis through the generation of reactive oxygen species in mouse embryonic fibroblasts. Exp. Mol. Med. 45, e35.   DOI
34 Park, M.J., Kong, H.J., Kim, H.Y., Kim, H.H., Kim, J.H., and Cheong, J.H. (2007). Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha. Biochem. J. 402, 567-574.   DOI
35 Pascual, G., Fong, A.L., Ogawa, S., Gamliel, A., Li, A.C., Perissi, V., Rose, D.W., Willson, T.M., Rosenfeld, M.G., and Glass, C.K. (2005). A SUMOylationdependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437, 759-763.   DOI
36 Rosen, E., Eguchi, J., and Xu, Z. (2009). Transcriptional targets in adipocyte biology. Expert Opin. Ther. Targets 13, 975-986.   DOI
37 Rosen, E.D., Hsu, C.H., Wang, X., Sakai, S., Freeman, M.W., Gonzalez, F.J., and Spiegelman, B.M. (2002). C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16, 22-26.   DOI
38 Saladin, R., Fajas, L., Dana, S., Halvorsen, Y.D., Auwerx, J., and Briggs, M. (1999). Differential regulation of peroxisome proliferator activated receptor gamma1 (PPARgamma1) and PPARgamma2 messenger RNA expression in the early stages of adipogenesis. Cell Growth Differ. 10, 43-48.
39 Sarjeant, K. and Stephens, J.M. (2012). Adipogenesis. Cold Spring Harb. Perspect. Biol. 4, a008417.   DOI
40 Scheffzek, K. and Welti, S. (2012). Pleckstrin homology (PH) like domains - versatile modules in protein-protein interaction platforms. FEBS Lett. 586, 2662-2673.   DOI
41 Son, H.E., Min, H.Y., Kim, E.J., and Jang, W.G. (2020). Fat mass and obesityassociated (FTO) stimulates osteogenic differentiation of C3H10T1/2 cells by inducing mild endoplasmic reticulum stress via a positive feedback loop with p-AMPK. Mol. Cells 43, 58-65.   DOI
42 Tanaka, T., Yoshida, N., Kishimoto, T., and Akira, S. (1997). Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 16, 7432-7443.   DOI
43 Tong, Q., Dalgin, G., Xu, H., Ting, C.N., Leiden, J.M., and Hotamisligil, G.S. (2000). Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290, 134-138.   DOI
44 Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I., and Spiegelman, B.M. (1994). mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224-1234.   DOI
45 Waite, K.J., Floyd, Z.E., Arbour-Reily, P., and Stephens, J.M. (2001). Interferon-gamma-induced regulation of peroxisome proliferator-activated receptor gamma and STATs in adipocytes. J. Biol. Chem. 276, 7062-7068.   DOI
46 Wu, Z., Bucher, N.L., and Farmer, S.R. (1996). Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol. Cell. Biol. 16, 4128-4136.   DOI
47 Wu, Z., Rosen, E.D., Brun, R., Hauser, S., Adelmant, G., Troy, A.E., McKeon, C., Darlington, G.J., and Spiegelman, B.M. (1999). Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3, 151-158.   DOI
48 Yu, J., Yun, H., Shin, B., Kim, Y., Park, E.S., Choi, S., Yu, J., Amarasekara, D.S., Kim, S., Inoue, J., et al. (2016). Interaction of tumor necrosis factor receptorassociated factor 6 (TRAF6) and Vav3 in the receptor activator of nuclear factor kappaB (RANK) signaling complex enhances osteoclastogenesis. J. Biol. Chem. 291, 20643-20660.   DOI
49 Xiao, H. and Jeang, K.T. (1998). Glutamine-rich domains activate transcription in yeast Saccharomyces cerevisiae. J. Biol. Chem. 273, 22873-22876.   DOI
50 Yamagata, K., Daitoku, H., Shimamoto, Y., Matsuzaki, H., Hirota, K., Ishida, J., and Fukamizu, A. (2004). Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J. Biol. Chem. 279, 23158-23165.   DOI