Browse > Article
http://dx.doi.org/10.4014/jmb.0906.06028

IscR Modulates Catalase A (KatA) Activity, Peroxide Resistance, and Full Virulence of Pseudomonas aeruginosa PA14  

Kim, Seol-Hee (Department of Life Science, Sogang University)
Lee, Bo-Young (Department of Life Science, Sogang University)
Lau, Gee W. (Department of Pathobiology, University of Illinois at Urbana-Champaign)
Cho, You-Hee (Department of Life Science, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.12, 2009 , pp. 1520-1526 More about this Journal
Abstract
We have identified the iscR (PA3815) gene encoding an iron-sulfur cluster assembly regulator homolog as one of the genes required for peroxide resistance in Pseudomonas aeruginosa PA14. Here, we present the phenotypic characterization of an iscR deletion mutant in terms of KatA expression, stress responses, and virulence. The iscR null mutant exhibited reduced KatA activity at the posttranslational level, hypersensitivity to hydrogen peroxide, and virulence-attenuation in Drosophila melanogaster and mouse peritonitis models. These phenotypes were fully restored by multicopy-based expression of katA. These results suggest that the requirement of IscR in P. aeruginosa is related to the proper activity of KatA, which is crucial for peroxide resistance and full virulence of this bacterium.
Keywords
Pseudomonas aeruginosa; IscR; KatA; iron;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, Y.-S., D.-H. Shin, I.-Y. Chung, S.-H. Kim, Y.-J. Heo, and Y.-H. Cho. 2007. Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J. Microbiol. Biotechnol. 17: 1344-1352   과학기술학회마을   PUBMED   ScienceOn
2 Deisseroth, A. and A. L. Dounce. 1970. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 50: 319-375   PUBMED   ScienceOn
3 Ding, H. and R. J. Clark. 2004. Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein. Biochem. J. 379: 433-440   DOI   ScienceOn
4 Hassett, D. J., E. Alsabbagh, K. Parvatiyar, M. L. Howell, R. W. Wilmott, and U. A. Ochsner. 2000. A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J. Bacteriol. 182: 4557-4563   DOI   ScienceOn
5 Imlay, J. A., S. M. Chin, and S. Linn. 1998. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640-642   DOI   ScienceOn
6 Kiley, P. J. and H. Beinert. 2003. Role of Fe-S clusters in sensing and regulating bacterial growth. Curr. Opin. Microbiol. 6: 181-185   DOI   ScienceOn
7 Lee, J.-S., Y.-J. Heo, J.-K. Lee, and Y.-H. Cho. 2005. KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73: 4399-4403   DOI   ScienceOn
8 Ma, J. F., U. A. Ochsner, M. G. Klotz, V. K. Nanayakkara, M. L. Howell, Z. Johnson, et al. 1999. Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa. J. Bacteriol. 181: 3730-3742   PUBMED
9 Ratledge, C. and L. G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54: 881-941   DOI   ScienceOn
10 Sonnleitner, E., S. Hagens, F. Rosenau, S. Wilhelm, A. Habel, K. E. Jager, and U. Blasi. 2003. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog. 35: 217-228   DOI   ScienceOn
11 Dean, R. T., S. Fu, R. Stocker, and M. J. Davies. 1997. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324: 1-18   PUBMED   ScienceOn
12 Shin, D.-H., Y.-S. Choi, and Y.-H. Cho. 2008. Unusual properties of catalase A (KatA) of Pseudomonas aeruginosa PA14 are associated with its biofilm peroxide resistance. J. Bacteriol. 190: 2663-2670   DOI   ScienceOn
13 Rahme, L. G., E. J. Stevens, S. F. Wolfort, J. Shao, R. G. Tompkins, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902   DOI   PUBMED   ScienceOn
14 Sies, H. 1991. Oxidative Stress. Academic Press Ltd., Orlando, FL
15 Nachin, L., M. El Hassouni, L. Loiseau, D. Expert, and F. Barras. 2001. SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: The key role of SufC, an orphan ABC ATPase. Mol. Microbiol. 39: 960-972   DOI   ScienceOn
16 Halliwell, B. and J. M. Gutteridge. 1990. Role of free radicals and catalytic metal ions in human disease: An overview. Meth. Enzymol. 186: 1-88   DOI   PUBMED
17 Tokumoto, U., S. Kitamura, K. Fukuyama, and Y. Takahashi. 2004. Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: Functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori. J. Biochem. 136: 199-209   DOI   ScienceOn
18 Yeo, W.-S., J.-H. Lee, K.-C. Lee, and J.-H. Roe. 2006. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol. Microbiol. 61: 206-218   DOI   ScienceOn
19 Hoff, K. G., J. J. Silberg, and L. E. Vickery. 2000. Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 97: 7790-7795   DOI   ScienceOn
20 Huet, G., M. Daffe, and I. Saves. 2005. Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: Evidence for its implication in the pathogen's survival. J. Bacteriol. 187: 6137-6146   DOI   ScienceOn
21 Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
22 Patzer, S. I. and K. Hantke. 1999. SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. J. Bacteriol. 181: 3307-3309   PUBMED   ScienceOn
23 Schweizer, H. P. 1991. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97: 109-121   DOI   PUBMED   ScienceOn
24 Smith, A. D., J. N. Agar, K. A. Johnson, J. Frazzon, I. J. Amster, D. R. Dean, and M. K. Johnson. 2001. Sulfur transfer from IscS to IscU: The first step in iron-sulfur cluster biosynthesis. J. Am. Chem. Soc. 123: 11103-11104   DOI   ScienceOn
25 Becher, A. and H. P. Schweizer. 2000. Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques 29: 948-950   PUBMED   ScienceOn
26 Heo, Y. J., I.-Y. Chung, K. B. Choi, G. W. Lau, and Y.-H. Cho. 2007. Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology 153: 2885-2895   DOI   ScienceOn
27 Agar, J. N., C. Krebs, J. Frazzon, B. H. Huynh, D. R. Dean, and M. K. Johnson. 2000. IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39: 7856-7862   DOI   ScienceOn
28 Imlay, J. A. 2006. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59: 1073-1082   DOI   PUBMED   ScienceOn
29 Krebs, C. J., N. Agar, A. D. Smith, J. Frazzon, D. R. Dean, B. H. Huynh, and M. K. Johnson. 2001. IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry 40: 14069-14080   DOI   ScienceOn
30 D'Argenio, D. A., L. A. Gallagher, C. A. Berg, and C. Manoil. 2001. Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183: 1466-1471   DOI   ScienceOn
31 Scott, M. D. and J. W. Eaton. 1996. Superoxide is not the proximate cause of paraquat toxicity. Redox Report 2: 113-119
32 Heo, Y. J., I.-Y. Chung, K. B. Choi, and Y.-H. Cho. 2007. R-Type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 17: 180-185   과학기술학회마을   PUBMED   ScienceOn
33 Giel, J. L., D. Rodionov, M. Liu, F. R. Blattner, and P. J. Kiley. 2006. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of $O_2$-regulated genes in Escherichia coli. Mol. Microbiol. 60: 1058-1075   DOI   ScienceOn
34 Urbina, H. D., J. J. Silberg, K. G. Hoff, and L. E. Vickery. 2001. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J. Biol. Chem. 276: 44521-44526   DOI   ScienceOn
35 Flint, D. H., J. F. Tuminello, and T. J. Miller. 1996. Studies on the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase in Escherichia coli crude extract. Isolation of O-acetylserine sulfhydrylases A and B and beta-cystathionase based on their ability to mobilize sulfur from cysteine and to participate in Fe-S cluster synthesis. J. Biol. Chem. 271: 16053-16067   DOI   ScienceOn
36 Schwartz, C. J., J. L. Giel, T. Patschkowski, C. Luther, F. J. Ruzicka, H. Beinert, and P. J. Killey. 2001. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. U.S.A. 98: 14895-14900   DOI   ScienceOn