• Title/Summary/Keyword: Regression Estimator

Search Result 312, Processing Time 0.019 seconds

Generalized Maximum Entropy Estimator for the Linear Regression Model with a Spatial Autoregressive Disturbance (오차항이 SAR(1)을 따르는 공간선형회귀모형에서 일반화 최대엔트로피 추정량에 관한 연구)

  • Cheon, Soo-Young;Lim, Seong-Seop
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • This paper considers a linear regression model with a spatial autoregressive disturbance with ill-posed data and proposes the generalized maximum entropy(GME) estimator of regression coefficients. The performance of this estimator is investigated via Monte Carlo experiments. The results show that the GME estimator provides efficient and robust estimate for the unknown parameter.

Improvement of Suspended Solid Loads Estimation in Nakdong River Using Minimum Variance Unbiased Estimator (비편향 회귀분석모형을 이용한 낙동강 본류 부유사량 산정방법의 신뢰도 향상)

  • Han, Suhee;Kang, Du Kee;Shin, Hyun Suk;Yu, Jae-Jeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.251-259
    • /
    • 2007
  • In this study three log-transformed linear regression models are compared with the focus of bias correction problem. The models are the traditional simple linear regression estimator (SL), the quasi maximum likelihood estimator (QMLE) and the minimum variance unbiased estimator (MVUE). Using such models, suspended solid loads can be estimated using the discharge - suspended solid data set that has been measured by NIER Nakdong River Water Environment Laboratory. As a result, SL shows negative bias for most values of the measured discharge range. QMLE is nearly unbiased for moderate values of the measured discharge range, but shows increasingly positive bias for either large or small value of the measured discharge range. MVUE is unbiased. It is also analyzed how the estimated regression coefficient and exponent are distributed along Nakdong river main stream.

Multiple Structural Change-Point Estimation in Linear Regression Models

  • Kim, Jae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.423-432
    • /
    • 2012
  • This paper is concerned with the detection of multiple change-points in linear regression models. The proposed procedure relies on the local estimation for global change-point estimation. We propose a multiple change-point estimator based on the local least squares estimators for the regression coefficients and the split measure when the number of change-points is unknown. Its statistical properties are shown and its performance is assessed by simulations and real data applications.

ROBUST REGRESSION ESTIMATION BASED ON DATA PARTITIONING

  • Lee, Dong-Hee;Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.299-320
    • /
    • 2007
  • We introduce a high breakdown point estimator referred to as data partitioning robust regression estimator (DPR). Since the DPR is obtained by partitioning observations into a finite number of subsets, it has no computational problem unlike the previous robust regression estimators. Empirical and extensive simulation studies show that the DPR is superior to the previous robust estimators. This is much so in large samples.

ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR OF REGRESSION FUNCTION UNDER NA ASSUMPTIONS

  • Liang, Han-Ying;Qi, Yan-Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.247-257
    • /
    • 2007
  • Consider the heteroscedastic regression model $Y_i=g(x_i)+{\sigma}_i\;{\epsilon}_i=(1{\leq}i{\leq}n)$, where ${\sigma}^2_i=f(u_i)$, the design points $(x_i,\;u_i)$ are known and nonrandom, and g and f are unknown functions defined on closed interval [0, 1]. Under the random errors $\epsilon_i$ form a sequence of NA random variables, we study the asymptotic normality of wavelet estimators of g when f is a known or unknown function.

ASYMPTOTIC NORMALITY OF ESTIMATOR IN NON-PARAMETRIC MODEL UNDER CENSORED SAMPLES

  • Niu, Si-Li;Li, Qlan-Ru
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.525-539
    • /
    • 2007
  • Consider the regression model $Y_i=g(x_i)+e_i\;for\;i=1,\;2,\;{\ldots},\;n$, where: (1) $x_i$ are fixed design points, (2) $e_i$ are independent random errors with mean zero, (3) g($\cdot$) is unknown regression function defined on [0, 1]. Under $Y_i$ are censored randomly, we discuss the asymptotic normality of the weighted kernel estimators of g when the censored distribution function is known or unknown.

The Bias of the Least Squares Estimator of Variance, the Autocorrelation of the Regressor Matrix, and the Autocorrelation of Disturbances

  • Jeong, Ki-Jun
    • Journal of the Korean Statistical Society
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 1983
  • The least squares estimator of disturbance variance in a regression model is biased under a serial correlation. Under the assumption of an AR(I), Theil(1971) crudely related the bias with the autocorrelation of the disturbances and the autocorrelation of the explanatory variable for a simple regression. In this paper we derive a relation which relates the bias with the autocorrelation of disturbances and the autocorrelation of explanatory variables for a multiple regression with improved precision.

  • PDF

The Asymptotic Unbiasedness of $S^2$ in the Linear Regression Model with Dependent Errors

  • Lee, Sang-Yeol;Kim, Young-Won
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • The ordinary least squares estimator of the disturbance variance in the linear regression model with stationary errors is shown to be asymptotically unbiased when the error process has a spectral density bounded from the above and away from zero. Such error processes cover a broad class of stationary processes, including ARMA processes.

  • PDF

ON MARGINAL INTEGRATION METHOD IN NONPARAMETRIC REGRESSION

  • Lee, Young-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.435-447
    • /
    • 2004
  • In additive nonparametric regression, Linton and Nielsen (1995) showed that the marginal integration when applied to the local linear smoother produces a rate-optimal estimator of each univariate component function for the case where the dimension of the predictor is two. In this paper we give new formulas for the bias and variance of the marginal integration regression estimators which are valid for boundary areas as well as fixed interior points, and show the local linear marginal integration estimator is in fact rate-optimal when the dimension of the predictor is less than or equal to four. We extend the results to the case of the local polynomial smoother, too.

On study for change point regression problems using a difference-based regression model

  • Park, Jong Suk;Park, Chun Gun;Lee, Kyeong Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.539-556
    • /
    • 2019
  • This paper derive a method to solve change point regression problems via a process for obtaining consequential results using properties of a difference-based intercept estimator first introduced by Park and Kim (Communications in Statistics - Theory Methods, 2019) for outlier detection in multiple linear regression models. We describe the statistical properties of the difference-based regression model in a piecewise simple linear regression model and then propose an efficient algorithm for change point detection. We illustrate the merits of our proposed method in the light of comparison with several existing methods under simulation studies and real data analysis. This methodology is quite valuable, "no matter what regression lines" and "no matter what the number of change points".