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ABSTRACT

The least squares estimator of disturbance variance in a regression model is biased under
a serial correlation. Under the assumption of an AR(I), Theil(1971) crudely related the bias

with the autocorrelation of the disturbances and the autocorrelaticn of the explanatory variable
for a simple regression. In this paper we derive a relation which relates the bias with the
antocorrelation of disturbances and the autocorrelation of explanatory variables for a multiple

regression with improved precision.

1. Introduction

Consider the model, y=X3+¢, e~N(0,0°P). The regressor matrix X is of order
nx kb with full column rank. The first column of X is the nx! vector of I's. The

2% n matrix P is the correlation matrix of the disturbance vector ¢ such that

-1 £1 P2 200 Pnoa
oy 1 p1 vt Prz
(1.D P=lps p1 1 =+ pns

...................

or,
(1.2) P:I+291D1+2,02D2+"'+2,0;;-1Dn_1,

with D. the nxn matrix with (i+s,i)th and (i,i+s)th elements % for i =1,2,+,
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n—s, and $=1,2,---,#—1, and the other elements 0. For example, for s=1, D,

becomes
-0 i 0 0 0-
1 0 1 0
kilﬁ 0 1 0 s e 0 0
(1.3 S N R
0 0 0 0 1
0 0 0 0-!

If ¢ is generated by an AR(1) process, then
(1.4 ps=p°% $=1,2 - n—1,
for some p bounded by —1 and -1,

The least squares estimator of the disturbance variance denoted by s? is defined by

(1.5 st=¢’e/(n—k),
where
(1.6 e={I-X(XX) ' X'} e=Me.

It is well known that s® is a biased estimator of ¢° under a serial correlation. Under
the assumption of an AR(1), Theil(1971, p.256) approximately related the bias
with the autocorrelation of the disturbances and the autocorrelation of the explana-
tory variable for £=2. But he did not make any attempt to generalize it, or improve
the approximation. Under the assumption of the AR(1), Neudecker(1978) established
the bounds for the bias which depended on #, k&, and p, But he did not establish any
relation between the regressor matrix X and the bias.

In this paper we will derive a relation which relates the bias with the autocorrela-
tion of disturbances and the autocorrelation of explanatory variables for arbitrary
k. This may be seen as a generalization of Theil's attempt with improved precision

so that it may be a practial guide for researchers.

2. The Bias of s> and the Autocorrelations of ¢ and X

As is well known, the expectation of s? is given by

Ity PAL

2D E(sH=-"

If we use the minor diagzeonal decomposition of P given by (1.2), then we have
fu) S b

(2.2 trPM=tr(Ii 20,0, ~2p,Dy | +++ 200 DL DM
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=tr M+ 20ty D\M 20,8y DoM<+ 4 200 _itv Do M
=(n—k)—2p:t1—2pete—++ —20n_1ls_1,

where

2.3 t,=—trDM=tr D, X(X' X)X, s=1,2,--,n—1.

In Appendix we show that under a certain set of assumptions {, is equal to the sum

of the autocorrelation coefficients of %2 explanatory variables at lag s, or,

2.4 te=71(8)+73(8)+++-+7:(s),

where 7,(s)=a,, and 7,(s) (j=2,3, -, k) are bounded by —a. and a, with a,.=(n—

s)/n by definition. If we define ¢, as
N SR
(2.5) 4= (t—as),

then under the same assumptions ¢, is the average of autocorrelation coefficients at
lag s of the k-1 explanatory variables, and is bounded by —a. and a.. Hereafter,
we call ¢, the sth autocorrelation coefficient of X,

Combining (2.1), (2.2), and (2.5), we get

(2.6) E(s)=-T ((n-B)~25 pua.— 2k~ D Ep.a.}
=0%(1+0),

where

@7 =2 (Zpat+(k-DEpg)

with summations over s=1,2, -, 7—1. We may call ¢ the relative bias of %,

3. A Useful Approximation of the Relative Bias

For further useful results we assume the followings:
Assumption 1: p;=p%, $=1,2,-,n—-1;
Assumption 2: ¢,=g¢q’, s=1,2,+-,1n—1.
Assumption 1 is nothing but an assumption of AR(1) process for e. Assumption 2
is a similar assumption for the explanatory variables. In this context we remind the
numerical results obtained by Ames and Reiter(1961), These two authors considered
100 annual statistical series of 23 observations referring to the period 1929—1953,

and taken at random from the annual abstract of statistics of the United States. On
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average, the first five autocorrelation coefficients came out at 0.84, 0.71, 0.60, 0.53,
and 0.45. If we multiply each coefficient by (25-8)/25, $=1,2,:--,5, we get ¢,
equivalents as 0.81, 0.65, 0.53, 0.44, and 0.36. If we calculate ¢* for g=0. 81, we get
0.81, 0.66, 0.53, 0.43, and 0.35. The correspondence of these figures strongly supports
our Assumption 2 for economic time series data.

Under Assumptions 1 and 2, we can approximate the relative bias ¢ by

_ =2 pa _1y_P4
3.1 o=t ({2 +e-D R,

with e=a,=(n—1)/n, p=p;, and g=g¢g,. Equation (3.1) shows that the relative bias
of s may be calculated approximately using #, %, p, and g only.

An acid test of the approximation c¢* for the relative bias ¢ may be a direct com-
parison of the bounds calculated by Neudecker(1978) and the theoretical bounds of
c*, For positive p,c* is a decreasing function of ¢q. Therefore the lower and upper

bounds of ¢* are reached at ¢g=a and ¢= —a, respectively, or,

_ _—2k  pa
(3.2 Ty 1-pa

. _2 pa - _ pa _ 1 _ k—2
(3.3 =% {1~pa (k=1) 1+pa }—CL* 1+ pa (pa k )

Table 1 compares the lower bounds of ¢* and ¢, and Table 2 the upper bounds of
them. The bounds of ¢, ¢, and ¢y, are calculated from Table 1 of Neudecker(1978).
Table 1 shows that the approximation error of ¢.* becomes small as p and/or 2
decreases, or n increases. For each combination of (&, p), Table 3 shows the range

of # for which the approximation error is less than 0.01. According to Table 2, the

Table 1. Comparison of the Lower Bounds of ¢+ and ¢

2 ‘ # ’ —CL* k=2 —CL —Cr* k=3 —~CL —CL* o —CL —Crx k=5 —CL
10 0.185 0.165 0.317 0.243 0.493 0. 304 0.740 0. 354
15 0.120 0.114 0.194 0.173 0.283 0. 224 0. 389 0.271
20 0.141 0.132 0.199 0.175 0. 266 0.215
0.3 20 0. 089 0.087 0.141 0.132 0.199 0.175 0.266 0.215
25 0.070 0.070 0.110 0.107 0.154 0.142 0.202 0.177
30 0.058 0.058 0.091 0.089 0.126 0.119 0.163 0.149
50 0.035 0.035 0.053 0.053 0.072 0.072 0.093 0.090
70 0.025 0.025 0.038 0.03 0.051 0.051 0. 065 0. 064
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k=2 k=3 k=4 k=5
L " —co* —cn | —Cux —c | —C* —c | —er? —c
10 0. 409 0.327 0.701 0.443 1.091 0.517 1.636 0.570
15 0. 269 0.241 0.438 0.344 0.636 0.420 0.875 0.481
20 0,201 0.189 0.319 0.276 0. 452 0.348 0.603 0.409
0.5 25 0.161 0.155 0.252 0.230 0. 352 0.294 0.462 0.352
30 0.134 0.131 0.208 0.195 0.288 0.254 0.374 0.307
50 0.080 0.080 0.123 0.121 0.167 0.160 0.214 0.199
70 0.057 0. 057 0.087 0.087 0.118 0.116 0.150 0.145
10 1.286 0. 688 2.204 0.780 3.429 0.822 5.143 0. 848
15 0.907 0.594 1.474 0.709 2.144 0.767 2,947 0. 804
20 0.704 0.519 1.118 0. 645 1.583 0.715 2.111 0.761
0.8 25 0.576 0. 459 0. 903 0. 589 1.261 0. 667 1. 655 0.720
30 0.487 0. 409 0.758 0.540 1. 050 0. 622 1. 365 0. 682
50 0. 302 0.281 0.463 0. 399 0.631 0.482 0. 807 0.551
70 0.219 0.212 0. 334 0. 306 0.452 0. 386 0.574 0.453

approximation error of cy* also becomes small as p and/or & decreases, or # increases,

with minor exceptions. For each combination of (&, o), Table 4 shows the range of »

Table 2. Comparison of the Upper Bounds of ¢+ and ¢

o \ n ‘ —Cy* ko2 —Cu —Cy* k=g —Cy i —Cy* ke —Cv —Cy* k=3 —Cy
10 0.035 0. 035 —0.012 —0.012 —0.060 —0.087 —0.107 —0.166

15 0. 024 0. 024 —0.007 —0.011 ~0.038 —0.050 —0.069 —0.095

20 0.019 0.019 —0.005 —0.007 —0.028 —0.035 —0.051 —0.065

0.3 25 0.015 0.015 —0.004 —0.005 —0.022 —0.026 —0.041 —0.050
30 0.013 0.013 —0.003 —0.004 —0.018 —0.021 —0.034 —0.040

50 0. 008 0. 008 —0.002 —0.002 —0.011 —0.012 —0.020 —0.022

70 0. 006 0. 006 —0.001 —0.001 —0.008 —0.008 —-0.014 —0.015

10 0.113 0.118 0. 044 0.043 —0.025 —0.049 —0.094 —0.165

15 0. 080 0. 082 0.034 0. 035 —0.011 —0.020 -0.057 —0.083

20 0. 061 0. 063 0.027 0.028 —0.006 —0.011 —0.040 -—0.055

0.5 25 0. 050 0.051 0. 023 0.023 —0.004 —0.007 —0.031 —0.040
30 0. 042 0.043 0. 020 0.010 —0.003 —0.005 —0.025 —0.031

50 0. 026 0. 026 0.012 0.013 —0.001 —0.002 —0.014 —0.016

| 70 0.019 0.019 0. 009 0. 009 —0.001 —0.001 —0.010 —0.011

10 0.478 0.443 0. 385 0. 381 0.292 0. 301 0.199 0.1%4

15 0. 360 0. 349 0.299 0. 305 0.238 0.253 0.177 0.191

20 0.288 0. 285 0.242 0. 250 0.197 0.210 0.152 0. 1€6

0.8 25 0.240 0. 240 0. 203 0.210 0. 167 0.178 0.131 0. 143
30 0.205 0. 206 0.175 0.181 0. 145 0.154 0.115 0.125

50 0.130 0.131 0.112 0.115 0. 094 0.099 0. 076 0. 081

70 0.095 0. 096 0. 083 0.084 0.070 0.072 0. 057 0. 060
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Table 3. Range of n for which |e.*—e.| <0. 01

k 2=0.3 2=0.5 0=0.8

2 15 or more 25 or more 70 or more

3 20 ” 50 " more than 70
4 30 ” 50 ” ” ”
5 50 ” 70 ” ” ”

Table 4. Range of n for which les* —es™| <0. 01

E p=0.3 | p=0.5 | p=0.8
2 10 or more 15 or more 20 or more
3 10 ” 15 ” 20 ”
4 20 ” 20 4 30 14
5 25 ” { 25 14 30 4

for which the approximation error of c¢y* is less than 0.01. According to Table 1 or
3, approximation ¢.* is poor for p=0.8 if # is less than 70. But for p=0.5 or less,
the approximation may be excellent for moderate # according as the combination (%,

p). According to Table 2 or 4, the approximation c¢,* is excellent for all cases

considered if #=30 or more.
4. Some Properties of the Relative Bias of s?

In Section 3 we have got an approximation of the relative bias of s%, and examined
the accuracy of it. Based on this approximation c* defined by (3.1), we may get
some propositions on the relative bias of s?:

(1) Under Assumptions 1 and 2, the relative bias depends almost exclusively on
the autocorrelations of disturbances and of the regressor matrix, p, and q.

(2) If both p and ¢ are positive, the bias is definitely negative.

(8) If p is positive, the lower bound of the bias is definitely negative.

(4) K p is positive, the upper bound of the bias is positive or negative according
as k(1—pa)—2 is positive or negative.

(5) If p is positive and ¢=0, the bias is definitely negative.

Proposition (1) follows from equation (3.1) directly. Proposition (2) is well known
at least for k=2, (See, for example, Theil(1971, p. 257).) Proposition (5) shows an

asymmetry of p and g. It follows from equation (3.2). Proposition (4) follows from
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equation (3.3). It is interesting to note that the sign of the upper bound of the bias
depends essentially on % and p only. Specifically for #» not too small (say less than

10), the sign is positive if and only if

“@.n k=

For example, for p=0.3, the sign is positive in case £z3; for p=0.5, in case k=4;
and for p=0.8, in case #=10. These are totally consistent with Neudecker’s(1978)
results. Neudecker(1978, p.1223) said, “It appears that for p=0.8, s* is biased toward
zero for all values of 2 considered by us.” Note that he did not consider £>5. He
also said, “Increasing the number of parameters k clearly tends to undermine the
conclusion about the sign of the bias [being negative] for low or intermediate values
of p. An obvious remedy for this is increasing the number of observations n.” In
the context of this passage, it seems that he did not clearly understand that what is

important in connection with the sign of the upper bounds of the bias is k&, not #.

APPENDIX

In this Appendix we will show that
(A. D L=trD,X(X’ X)X, s=1,2,+, 11,
is related to the autocorrelation coefficients of the explanatory variables in X. To
this end we need to transform the X matrix into a normalized form.

First, define the #x#» nonsingular matrix A* as

-1 —Xp/S2 Es/S3 e Xu/Sk-

;0 s, 0 = 0
(A.2) A*:%. 0 0 /sy = 0

0 0 0 e sk -,

where %, and s; are the mean and the standard deviation, respectively, of the jth
explanatory variable in X, Then we can show that X*, defined by X*=XA* is the
normalized form of X in the sense that X* X* is the correlation matrix of X, or
,1 O O oo 0 -
(A.3) X*’X*:Rzl

........................
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where

(A4) r‘,j:xi*/xj*: Z:-:(xzi;.f;?(x:j“fi) , i,j:2, 3, "',k.
i9j

Further, using the normalized matrix X*, we can express the sth order serial
correlation matrix of the explanatory variables R(s) in a compact form as

-71(8)  71(8) e r(S)-
(A.5) X* D, X*=R(s) = 712(8)  72(8) e 72u(S)

..............................

r1a(8) 7 (8) e 7u(s) -,

where
r;,(s)zx;*’D,x;*; i,jzl, 2,“',k;
(A. 6) 7’,’,‘(3>:x.‘*’D:xi*: p3 t=1 (xti_z;)'S(:xt+n j‘ji) : i,j:2, 3, -, k
n_
() =ru(s) ="

ri(8)=ru(s), i1=1,2,-, k.
If we divide r:(s) by r,(s), then it is bounded by —1 and 1, so that 7:;(s) is bounded
by —(n—s)/n and (m—s)/mn. To further our investigation we need
Lemma 1, X*(X¥X*)'X*=X(X" X)X,
Proof. Noting that A* is a nonsingular matrix, the result follows trivially. According
to Lemma 1, we can express the matrix X(X’X)'X’ as
(A.D XX X)X =X*R1X*,
Lemma 2, If R=], then ¢{,={rR(s).
Proof. {,=trD.X(X' X)X =trD,X*R'X* =tr X* D, X*=trR(s). Lemma 2 says that
if the explanatory variables are mutually uncorrelated, then ¢, is the sum of the auto-
correlation coefficients of the columns of X at lag s, or,
(A.8) L=21.7:(8).
Lemma 2 can be generalized for cases when R is a block diagonal matrix satisfying
the following assumptions.
Assumption Al:
(1) X and X* are partitioned in G groups as
X=[X, X;--X¢], X, is of order nxk, g£=1,2, -, G;
X =[X* Xp*--Xo*], X,* is of order nxk,, g=1,+-G.
(2) R is a block diagonal matrix such that
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R, 1
(A.9) R=| R

.RG_!,
where R, is k, <k, such that

(A.10) R.=R.,(1,7.)= re 1 ¥y oo T . £=2,3,+,G;

..................

R,=1.,.
(3) R(s) is a block diagonal matrix with gth block R,(s) such that
(A.1D R.(s)=Cu:Ryy £=1,2,,G
where ¢, may be interpreted as the sth common autocorrelation coefficient in the
gth group.
Theorem A, Under Assumption Al, {,=#rR(s).
Proof. Under Assumption Al,

R, 0 ]
(A.12) R“:l: et iizh—{ beft™ }
R beRs* ],

where
(A.13) R*=R.(a,, 1),
with

a,=— (ks —17s,
(A.14) b —7s

- 1_<kg“1>712+<kl_2)rr '

Now, we can express the matrix in (A.7) as follows:

(A.15) XFRIX* = X*X* + 38 b, X R* X
Therefore ¢,=trD,X*R"1X*" becomes
(A.16) bL=trDX*X* -3¢ b trD. X, *R.* X, *

=trR(s)+ X8 b, trR* R, (s)
=t R(S)+ X 8.0, Cestr R*R,.
The last equality holds due to our assumption (A.11). Now,
(A1) trR,*R,=trR.(a,, DR, 7o)
=Rea;+k(ke~ 1)1, =k.a,—kea,=0.

The second equality holds due to the definition of trace, and the third due to our
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definition (A.14). Combining (A.16) and (A.17) we arrive at the conclusion of
Theorem A.
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