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ON MARGINAL INTEGRATION METHOD IN
NONPARAMETRIC REGRESSION'

Young Kyung LEg!

ABSTRACT

In additive nonparametric regression, Linton and Nielsen (1995) showed
that the marginal integration when applied to the local linear smoother
produces a rate-optimal estimator of each univariate component function
for the case where the dimension of the predictor is two. In this paper
we give new formulas for the bias and variance of the marginal integration
regression estimators which are valid for boundary areas as well as fixed
interior points, and show the local linear marginal integration estimator is
in fact rate-optimal when the dimension of the predictor is less than or equal
to four. We extend the results to the case of the local polynomial smoother,
too.
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1. INTRODUCTION

Suppose that we observe (X 1,Y1),...,(Xn,Ys) which are 7id copies of (X,Y),
where X is a d-dimensional predictor. Let m(z) = E(Y|X = z) is the regression
function. In additive regression models, it is assumed that

m(z) = mg +my(z1) + - + mg(zg) (1.1)

where my is a constant and m;’s are univariate functions. See Hastie and Tib-

shirani (1990) for the practical and theoretical aspects of additive models.
Three useful approaches to estimate the regression function are the ordi-

nary backfitting algorithm (Friedman and Stuetzle, 1981; Buja et al., 1989), the
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smooth backfitting (Mammen et al., 1999), and the marginal integration (Linton
and Nielsen, 1995). Opsomer and Ruppert (1997), Opsomer (2000) and Mammen
et al. (1999) provided some statistical properties of the backfitting estimators.
Sperlich et al. (1999) compared finite sample properties of the ordinary back-
fitting and marginal integration methods. Severance-Lossin and Sperlich (1999)
extended the approach of marginal integration to regression derivative estimation.

Linton and Nielsen (1995) showed that the marginal integration method, when
applied to the local linear smoother, can achieve the one-dimensional n=2/% rate
of convergence under the smoothness condition that m has two continuous par-
tial derivatives. However, their proof relies on the stochastic approximation of
the marginal integration estimator by the ‘internal estimator’ which is a multi-
variate Nadaraya-Watson-like estimator with the true joint density function in
the denominator. The approximation error is of order O,(n~*h~¢) when a com-
mon bandwidth A is used for the initial smoother. This can dominate unless
h is chosen very large, thereby excluding the optimal bandwidth b = O(n~1/%)
in the case where d > 3. In fact, Linton and Nielsen (1995) failed to show the
one-dimensional n~2/5 rate of convergence for the marginal integration method
when d > 3.

In this paper, we give new formulas for the bias and variance which are valid
for boundary areas as well as fixed interior points, and show that the marginal
integration can afford the univariate convergence rate for d < 4. For this, we
derive a relevant stochastic expansion for the estimator, which is different from
the one used by Linton and Nielsen (1995). Furthermore, we extend the results to
the case of the local polynomial smoother. We show that the marginal integration
when applied to the local polynomial estimators of order p (odd) can have the

one-dimensional n~(P+t1)/(2P+3) rate of convergence when d < 2(p + 1).

2. MARGINAL INTEGRATION WITH LOCAL LINEAR SMOOTHER

Let ¢ be a given weight function defined on R? with fq(u)du = 1. For ¢ =
(z1,...,24), we write £_; = (21,...,Zj-1,%j+1,...,%4). Define g_;, 1 < j < d,
to be the marginalizations of ¢ on IR, i.e., g_;(u—;) = [ g(u)du;. Also, define
g;j(u;) = [ g(u)du_;. Define

aj(z;) = /m(w)<1~j(f'«‘—j)d-”3—j

for § = 1,...,d. The marginal integration method is based on the fact that
aj(z;) = ¢; + mj(z;) under the additive structure (1.1), where ¢; = mg +
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Zi# [ mg(zk)gr(zr)dzk. Thus, up to constant addition, a;(z;) is the univari-
ate component of interest, m;(z;). Identifiability of m;’s requires an additional
structural assumption. A usual practice is to assume that all the component
functions are centered, i.e. E{m;(X;)} =0,7=1,...,d.

Suppose that we are given an estimator m(z) of m(z). The marginal inte-
gration estimator of o;(z;) (Linton and Nielsen, 1995) is given by

aj(z;) = /ﬁz(z)q_j(:v_j)dsc_j.

With the norming conditions E{m;(X;)} =0, j = 1,...,d, the j** component
function m;(z;) may be estimated by

m(z;) = Gj(a;) —n' Y 3;(Xy), (2.1)

and the constant term mg, which equals E(Y), is then estimated by Y. Thus,
the estimator of the whole regression function m(x) is given by

d
Y+ milz;). (2.2)
j=1

In this section, we consider the local linear smoother for m. Thus, m(z) is
given by By = fo(x) which, with 3; for j = 1,...,d, minimizes

> (- (K2} T (K2),

where K’s are kernel functions and h;’s are positive numbers called bandwidths.
Let Y = (Y1,...,Y,)T and X7 = (ay,...,a,) with

a; = ai(z) = (1 Xir = 71 Xid —zd)T
1 (3 b hl AR | hd *

Define W = W(z) to be the n x n diagonal matrix whose i diagonal entry
equals H?zl Kjp,(Xij — z;), where Kjp;(uj) = Kj(u;j/hj)/h;. Then, we may
write

m(z) = e, (XTWX) ™ XTWY, (2.3)

where e; is the (d + 1)-dimensional unit vector with 1 appearing in the first
position.
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In the first two theorems below, we give a uniform stochastic expansion of
a;j(z;) and its asymptotic distribution. We emphasize here that these results do
not require the regression function to have the additive structure given at (1.1).
We collect the assumptions below:

(A1) The kernel functions K’s have compact supports, say [—1, 1}, and are Lip-
schitz continuous, nonnegative and symmetric with [ K; = 1;

(A2) The marginal density, f, of X has a compact support, say [0, 1]¢, is bounded
away from zero and infinity on its support, and satisfies the Lipschitz con-
dition of order 1; :

(A3) The weight function ¢ has a compact support which is contained in [0, 1]¢,
and is continuous;

(A4) The regression function m(a) has continuous second partial derivatives;
(A5) The variance function o%(z) = Var(Y|X = z) is continuous;
(A6) The bandwidth h; is asymptotic to n™% with y; > 0 and y; + -+ +74 < L.

To state the first theorem, let M (x) denote the (d + 1) x (d + 1) matrix of
the (incomplete) moments of the product kernel defined by

(1—zq)/hg (I-z1}/h1 /4 d
M (z) =/ / (u> (1, u”) [T K;(uj)du;,

~z4/hq —z1/h j=1

where w = (u1,...,uq)T. Define Y;*(z) = Yi—m(x) -3, (Xij—z;){0m(x)/0z;}
and

T;(z5)
n d
=n' Z/{f(w)—lelTM_l(w)ai(w) HKr,hr (Xir - iL'r)Yi* (33)} q_j(a:_j)da:_j.
=1 r=1

THEOREM 2.1. Assume (A1)-(A6) hold. Then, for each j = 1,...,d, uni-
formly for z; € [0,1] as n— oo, we have

d
8(25) — og(z5) = Ty(as) + op (D b2 +n~2/2R51/%).

r=1
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The next theorem describes the limit distribution of &;(z;). To state the
theorem, let K]*(u, z;) be the equivalent kernel (see Fan and Gijbels, 1996) defined
by

) = p2,5(25) — p,5(25)u (1w
K (w2;) {uo,j(xj)uz,j(mj)—m,j(xj)Q}K]( )

where
(1-z;)/h; k
uk,j(mj) =/ U Kj(u)du.
—x;/h;
Define for j =1,...,d

(1-2;)/h; 2
bj(xj)zf T WK (v, 35)du 9'm(z)

———q_j{T_;)}dz_;, 24
—z‘j/hj awg .7( J) J ( )

(1—z;}/h;j 02(:1:)
si(z;) = K*(u,z;)}%d / 2 (z_;)dz_;,
D=, R [ gy e
and for r # j
1 02
by j(z;) =/1u2Kr(u)du -—%q_j(m_j)dm_j. (2.5)

THEOREM 2.2. Under the conditions of Theorem 2.1, we have for each j =
1,...,d and for every z; € [0,1], possibly depending on n,

&;(z;) — aj(z;) = (nhy)™?si(x5) Zn + %{bj(%')hf + Zbr,j(mj)hf}
r#j

d
+op (3 h2 + 071212
r=1

asn — oo, where Z, converges in distribution to the standard normal distribution.

The bias and variance formulas given in Theorem 2.2 are simplified for interior
points. For z; € [hj,1 — h;], we have K;(u,z;) = Kj(u) by the condition (Al),
and can replace the incomplete integrals in the definitions of b;(z;) and s?(:cj)
by the complete integrals over the entire interval [—1, 1].

Now, we present some statistical properties of M ;(z;) defined at (2.1). First,
we note that, under the additive structure (1.1), 82m(m)/8x? = mj(z;). Thus,
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bj(z;) and b, j(z;) defined at (2.4) and (2.5), respectively, may be replaced by

~ ; (1-z;)/h; o
bi(z;) = mj(:vj)/ u“K; (u,z;)du,
—z;j/hj
1

brj(z;) = by = /m;'(:cr)qr(mr)dzrr /_luQKr(u)du.

By Theorem 2.1, we have
_IZ{aJ i) — o5 (Xi5)} —n"IZT i) +op<2h2+n"1/2h 1/2> (2.6)
i=1 r=1

It may be shown that the stochastic part of n™'>"7_,T;(X;;) makes a negligible
contribution of order op(n'l/ th—l/ 2). Also, it is not difficult to see that

E{Tj(X;)} = 2{h Ebi(Xy) + > h2h }+O(Z °) (2.7)

T#j
We define the ‘centered’ version of gj(zj) by
be(z;) = bi(z;) — Ebj(X;).

From (2.6), (2.7) and the fact n™'3"% 0j(Xij) — ¢; = Op(n~/?) under the
norming condition E{m;(X;)} = 0, we obtain the following theorem.

THEOREM 2.3. In addition to the assumptions (A1)-(A6), we assume that
the regression function has the additive structure (1.1) and E{m;(X;)} =0 for
1 < j < d. Then, for each j = 1,...,d and for every z; € [0,1], possibly
depending on n,

d
~ - 2
j(e;) —mj(z;) = (nhy) "2 sj(27) Zn + bﬁ(%‘)h? +op (D _h7
2 r=1
asn — 0o, where Z, converges in distribution to the standard normal distribution.
The leading bias of 77;(z;) does not depend on the other component functions
my, T # j. If one takes h; < n~'/% then M;(z;) converges to m;(z;) at the

univariate rate n—2/5. However, this is true only when nhy x --- x hy = nt=(4/5)
converges to infinity as n goes to infinity, i.e., when d < 4. Thus, we conclude that



MARGINAL INTEGRATION METHOD 441

the local linear marginal integration estimator achieves the univariate optimal
rate n~%/% when d < 4.

Next, we consider m(x) defined at (2.2). Suppose that we take h; < h =n""
for all 1 < j < d where 0 < v < 1/d. It may be shown that the covari-
ances of Tj(z;) and Tj(zj) for j # j' have negligible magnitudes of order
o(n~'h~!). Thus, the asymptotic moments of the estimator m(z) are easily
calculated from those of Mi;(z;)’s. Define vi(z) = n! Z?zl h;lsz(:vj) and

J
Bal@) = S0, h2Te(2;)/2.

THEOREM 2.4. In addition to the conditions of Theorem 2.3, we assume
hj <h=n7" foralll <j <d where 0 <y <1/d. Then,forevery]#j and
for all zj,zj € [0,1], possibly depending on n,

Cov {Tj(z;), Ty (zj1)} = o(n *h71)
as n— oo, and hence for all € [0,1)%, possibly depending on n,

(@) — m(z) = va(x)Zn + Pulx) {1+ 0p(1)},

where Z,, converges in distribution to the standard normal distribution.

3. MARGINAL INTEGRATION WITH LOCAL POLYNOMIAL SMOOTHER

We present extensions of the theorems in the previous section to the case of
the local polynomial smoothers with order p. We treat only the case where p
is odd. The local p™ order polynomial smoother mi(z) is given by By = Bo(m)
which, with §; for j = 1,2,..., minimizes

n Xy —
Z{Y Bo — B (——hl f”l) _..._g, (——"’hd “’d)

Y s (55

. , . d—1
where J is the total number of 8’s, which equals J = Ele ( d_f’).

For a d-tuple » = (r1,...,74) and a d-dimensional vector x, write

rl=r!x. - xrg,
d

Ir| = Zn,
=1

2" =2 x - x gl
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For a function g defined on R?, write

olg(x)
AR
To state an extension of Theorem 2.1, we need to define an ordering of the
d-tuples r. Consider the group of r’s with |r| = j for a fixed j € {1,...,p}.
Recall that there are (d—;ﬂ) members in this group. Arrange the d-tuples in

2)’ r( s positioned first if ril) =

9" ()

this group as follows: For two r(1) and !
7‘%2),...,@(61_)1 = r,(f_)l and r,(cl) > r,(cz) for some k£ € {1,2,...,d}. This means
(4,0,...,0) is positioned first, then followed by (j—1,1,0,...,0), and (0,...,0,7)
is the last. Next, concatenate these ordered groups in the order of their sizes,
i.e., put the group with |r| = 1 first and put the one with |r| = p last. This
yields an arrangement of total J d-tuples. Call this arrangement A. Now, define
a function ¢ which maps a d-tuple r to its rank in the arrangement A. For
example, ¢((1,0,...,0)) = 1 and ¢((0,0,...,p)) = J. Next, for a d-dimensional
vector u define I(u) to be the J-dimensional vector such that (I(u)),r) = ",
i.e., u” is the (7)™ entry of I(u).
Now, define an extension of M(z) by

(1-24)/hq (-z1)/m 7 1
@) ~z4/hq —z1 [k l(u) (L, 1(w) )JI;Il 5 () du;

Let Yf (&) = Yi ~ 37.1-0 Ar(Xs — 2)"m{") (z) and

n d
_ _ _ Xi -~ T %
Tiey) =n”' 3 J{r@ et Mm@ (FE) IT £ (e =) (=)}
xq—j(@_j)de_j,
where b/a = (b1/a1,...,bg/aq)T for two d-dimensional vectors a and b.

An extension of Theorem 2.1 is given below. The theorem holds under the
assumptions stated in the previous section with only (A4) being replaced by

(A4’) The regression function m(z) has continuous partial derivatives up to order

p+ 1
THEOREM 3.1. Assume (A1)-(A3), (A4'), (A5) and (A6) hold. Then, for
each j =1,...,d, uniformly for z; € {0,1] as n— 0o, we have

d
aj(z;) — aj(z;) = Ti(z;) + op(z R 4 n‘l/zhj-_l/z).

r=1
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Let M ;(z;) denote the matrix M(z) with the integrals over | — z,/h;, (1 —
xr)/hr] (r # ) being replaced by the complete integrals over [—1,1]. Define

K:;(’U,j,l'j) = elTMj_l(.’Ej)(l(i))Kj(Uj). (31)

Note that the right hand side of (3.1) does not depend on u, for r # j. Define
analogues of b;(z;), s?(xj) in (2.4) by

(1~z5)/h; i Pz
bp,j(z;) =/ Up+1’Cj(u,wj)dU/{—(~)~ q-j(z—j)dz_j,

—x;/h; 8x§+1
(l_zj)/hj 0'2(;1;)
s2 (z; =/ Ki(u,z; 2du/{ } 2 (z_;)dz_;.
p,]( J) —avj/h,j { ]( J)} f(:l}) q _7( J) 7
Also, for 7 # j define
1 Ptim(z
bp,r,j(:rj) = /_1 u”HKT(u)du / {—-511:17—4—(1—)} q_j(:c_j)da:_j.

An extension of Theorem 2.2 is given as follows.

THEOREM 3.2. Under the conditions of Theorem 3.1, we have for each j =
1,...,d and for every z; € [0,1], possibly depending on n,

R B 1

d

- -1/2

+Zb ,T,j(wj)hfﬂ} +op(z hir’+1 +n 1/2hj / )
T#j o

as n— oo, where Z, converges in distribution to the standard normal distribution.
Define an analogue of Zj(i'j) in the previous section by
by.3(x5) = bp,i(z;) — E by 5(X;).
We obtain the following extension of Theorem 2.3.

THEOREM 3.3. In addition to the conditions of Theorem 3.1, we assume
that the regression function has the additive structure (1.1) and E{m;(X;)} =0
for 1 < j < d. Then, for each j = 1,...,d and for every z; € [0,1], possibly
depending on n,

d
. _ 1+
i (25) ~ my () = (nhy) " 2sp3(2)) Zn + 35 5(2))H5 T + 0p (Z h’;“)
r=1

as n— oo, where Z,, converges in distribution to the standard normal distribution.
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As in the case of the local linear marginal integration, the leading bias of
m;(z;) does not depend on the other component functions m,, r # j. If one
takes h; < n~1/(2P+3) then m;(z;) converges to m;(z;) at the univariate rate
n~(P+1)/(2p+3) " Again, this is true only when nhy X --- X hy = nl=(@/(2p+3))
converges to infinity as n goes to infinity, i.e., when d < 2(p + 1). This implies
that the local p** order polynomial marginal integration estimator achieves the
univariate optimal rate n~(®+1/(2P+3) when d < 2(p + 1).

An extension of Theorem 2.4 is also immediate with obviously modified defi-
nitions of v2(z) and B,(z). Thus, we do not state the extension here.

4. PROOFS

We only give proofs of Theorems 2.1, 2.2 and 2.4. A proof of Theorem 2.3
is immediate from the discussion in Section 2. Theorems 3.1-3.3 can be proved
in similar fashions as in the proofs of Theorems 2.1, 2.2 and 2.3, but with more
notational complexity.

4.1. Proof of Theorem 2.1

Define hproq = h1 X --- x hy. Write X(z)T = (ai1(z),...,an(z)). By a
standard technique in the kernel density estimation, it may be shown that

;I;X(w)TW(m)A’(w) ~ f(@)M(z)| = Op(p),

sup
xelo,1]d

where p = ¢ A, + v/ (log n)/(nhprod). Let I denote the identity matrix. It
follows then from a Taylor expansion for the matrix inversion operation that

1 T -1

<;X(a:) W(a:)X(:c)) (4.1)

I BN Y R B A DY "y

= f(w)M(m) [1+;{1 o) <n2\:'(:c) W(:c)X(a:)) M(z) } }
+Rk(w)7

where sup¢,1j4 | Ri(z)| = Op(p*T1).
For the local linear estimator defined at (2.3), we can write

m(x) — m(z) (4.2)

1 g 4
=e7 <—X(m)TW(m)X(a:)> EZai(w) {H Ky p, (Xip — x,)} Y (z).
i=1

n
r=1
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Furthermore, one may show

i—é/ ?(17)M(a:)-1 {I— }(17) (%X(m)TW(m)X(a:)) M(m)"l}e

d
xa;(z) {H Ko (Xir - wr)} Y (2)gj(z-j)dz—;  (43)
r=1

d
=0, {pf <Z K2 + n-l/Qh;1/2> } ,
r=1

n d
%; / Bi(@)ai(z) {Ul K, (Xir — xr)} Y (@)g-j(@—j)dz—;  (44)
— Op (pk+1> )

Taking k large enough so that p*t! = o(n‘l/zhj_l/z) and using (4.1)—(4.4) con-
clude the proof of Theorem 2.1.
4.2. Proof of Theorem 2.2

We calculate the mean and variance of Tj(z;). For ¢ = (z1,...,z4)7, let
Ip =1 x -+ x I where I, = [-z,/hy,(1 — z,)/h:]. Then, we have

B{T ey} = 3 [[ {{E Rt b bermi@ (L) o)

u

d
xulH {V:m(z)} Hu{ H Kr(ur)}q_j(a:_j)dud:c*j{l +o(1)},
r=1

where H is the diagonal matrix with h,’s being its diagonal entries, and V2m(zx)
is the d x d matrix with 8°m(zx)/dz,0z, being its (r, s)?* entry.

Now, because of the integration with respect to _;, the integrals over I,’s
(r # j) in (4.5) and those for M (z) therein may be replaced by the complete
integrals over [-1,1). Let M ;(z;) denote the matrix M (x) with the integrals
over I.’s (r # j) being replaced by the complete integrals over [—1,1]. Then, by
symmetry of K,'s it is easy to see

elTM]Tl(.Tj) (i)K](u]) = K;(uj,:z;j), (4.6)
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By symmetry of K,’s again, it follows from (4.5) and (4.6) that

E{Tj(zj {b ;) h2 + me zj)h } +o0 (Z h2) (4.7)

T#j

Next, we compute the variance. We note that
Var{E (T;(z;)| X1, ..., Xn) } = O{n-lh (E h2)} ('R, (48)
Now, define K;’hj(u,mj) = K;(u/hj,z;)/h;. Then, by the equation (4.6)
E{Var(Tj(q:j)|X1,...,Xn>}
1 1 | d 2
= ;E,: /f :1: elTM—l(w)al(:L‘) HKT,hr (Xlr — xr)q_j(:v_j)da:_j} UQ(XI)]

= %E [{ n; (X135 — 5, 2, /f rhr(Xlr - xr)Q—j(“’—j)d‘l’—j}QU2(X1)]’

which equals n™h; 's2(z;){1 + o(1)}. This and (4.8) yield the variance formula
for @;(z;). Asymptotic normality follows by a standard technique, which together
with (4.7) completes the proof of the theorem.

4.8. Proof of Theorem 2.4

We only prove the first part. The second part is immediate from the first. We
first note that the covariance of the conditional expectations, E{T}(z;)|X1,...,
Xn} and E{Tj(z;)|X1,...,Xn}, has an order of magnitude o(n"'h=1) by
(4.8). Now, we compute the expectation of the conditional covariance. Write

d
wij(z5) = / ﬁelTM_l(w)ai(w)g Ky h (Xir = 27)q—j(@—5)dz ;.

Then, we may write
1
E {COV (Tj(aij),le(.'Ej/) |.X1, ce ,Xn)} = E E {wlj(:cj)wlj: (.’I)j/)az(xl)} .

(4.9)
By (4.6), we may approximate wi;(z;) by

q-J'(X—j) X .
f(Xl,---an—laxj’Xj+1a Xd) ( b )
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Plugging this into (4.9) and using the fact that the integral of K (u, ;) over
u € [—z;/h;, (1 — z;)/h;] equals 1, we may conclude that the right hand side of
(4.9) equals

Nyt 1,1

—_ i o . ) d i ar 1 1 — h_

n/ f(z) q J(-’B ])q J (z ]) T (M){ +0(1)} = on ),
where z_; ;1) is the vector formed from x with z; and ;s being deleted.

REFERENCES

Buia, A., HasTig, T. aND TIBSHIRANI, R. (1989). “Linear smoothers and additive models
(with discussion)”, The Annals of Statistics, 17, 453-555.

FaN, J. AND GUIBELS, 1. (1996). Local Polynomial Modelling and Its Applications, Chapman
& Hall, London.

FRIEDMAN, J. H. AND STUETZLE, W. (1981). “Projection pursuit regression”, Journal of the
American Statistical Association, 76, 817-823.

HasTig, T. AND TIBSHIRANI, R. (1990). Generalized Additive Models, Chapman & Hall, New
York.
LintoN, O. B. anD NIELSEN, J. P. (1995). “A kernel method of estimating structured
nonparametric regression based on marginal integration”, Biometrika, 82, 93-100.
MaMMEN, E., LiNTON, O. AND NIELSEN, J. (1999). “The existence and asymptotic properties
of a backfitting projection algorithm under weak conditions”, The Annals of Statistics,
27, 1442-1490.

OPSOMER, J. D. (2000). “Asymptotic properties of backfitting estimators”, Journal of Multi-
variate Analysis, 73, 166-179.

OPsOMER, J. D. aAND RupPERT, D. (1997). “Fitting a bivariate additive model by local
polynomial regression”, The Annals of Statistics, 25, 186-211.

SEVERANCE-LOSSIN, E. AND SPERLICH, S. (1999). “Estimation of derivatives for additive
separable models”, Statistics, 33, 241-265.

SPERLICH, S., LINTON, O. AND HARDLE, W. (1999). “Integration and backfitting methods in
additive models-finite sample properties and comparisons”, Test, 8, 419-458.



