• Title/Summary/Keyword: Reflow temperature

Search Result 104, Processing Time 0.019 seconds

Evaluation of Structural Integrity and Heat Exchange Efficiency for Dimpled Tube Type EGR Cooler (딤플 튜브형 EGR Cooler 구조건전성 및 열효율 평가)

  • Seo, Young-Ho;Lee, Hyun-Min;Park, Jung-Won;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.554-559
    • /
    • 2008
  • Most of vehicle manufacturers have applied exhaust gas recirculation (EGR) system to the development of diesel engines in order to obtain the high thermal efficiency without $NO_X$ and Particulate Matter (PM) emitted from the engine. EGR system, which reflow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine, has been used to solve this problem. In order to confirm the safety of the EGR system, finite element analysis was carried out. The safety of EGR system against temperature variation in the shell and tubes was evaluated through the thermal and structural analysis, and the modal analysis using ANSYS was also performed. Finally, the performance of EGR system was verified through the experiment and numerical simulation using effectiveness-NTU method. Program for the estimation of the heat exchange efficiency of the EGR system with regard to the dimpled tube shape was developed.

  • PDF

A study on the Joining Properties of Bi-2212 High-Tc Superconducting Tube and Indium Solder (Bi-2212 고온초전도튜브와 인듐솔더의 접합특성연구)

  • Oh, S.Y.;Hyun, O.B.;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.179-183
    • /
    • 2006
  • As a material for SFCL(Superconducting Fault Current Limiter), BSCCO tube with metal stabilizer is a promising candidate, assuring the stability and large power capacity, For the application, the proper soldering technique, which overcome the difficulties of the joining between BSCCO and metal stabilizer, is required. In this study, after soldering In-Bi solder and In-Sn solder with BSCCO superconductor, welding properties between BSCCO and solders were investigated. Because ceramic materials is difficult to weld, Ag electro-plating on BSCCO 2212 is used for intermetallic layer. To find out the best welding condition for superconductor, soldering is tested in the maximum temperature from $155^{\circ}C\;to\;165^{\circ}C$ in the reflow oven. By investigating the composition and thickness of IMC (lntermetallic Compound) created in the reaction of Ag with solder, we analyzed the welding properties of High-Tc superconductor from a micro point of view.

  • PDF

A Study on Solderability of Sn-Ag-Cu Solder with Plated Layers in ʼn-BGA (ʼn-BGA에서 Sn-Ag-Cu 솔더의 도금층에 따른 솔더링성 연구)

  • 신규식;정석원;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.59-59
    • /
    • 2002
  • Sn-Ag-Cu solder is known as most competitive in many kinds of Pb-free solders. In this study, effects of solderability with plated layers such as Cu, Cu/Sn, Cu/Ni and Cu/Ni/Au were investigated. Sn-3.5Ag-0.7Cu solder balls were reflowed in commercial reflow machine (peak temp. : 250℃ and conveyer speed : 0.6m/min). In wetting test, immersion speed was 5mm/sec., immersion time 5sec., immersion depth 4mm and temperature of solder bath was 250℃. Wettability of Sn-3.5Ag-0.7Cu on Cu, Cu/Sn (5㎛), Cu/Ni (5㎛), and Cu/Ni/Au (5㎛/500Å) layers was investigated. Cu/Ni/Au layer had the best wettability as zero cross time and equilibrium force, and the measured values were 0.93 sec and 7mN, respectively. Surface tension of Sn-3.5Ag-0.7Cu solder turmed out to be 0.52N/m. The thickness of IMC is reduced in the order of Cu, Cu/Sn, Cu/Mi and Cu/Ni/Au coated layer. Shear strength of Cu/Ni, Cu/Sn and Cu was around 560gf but Cu/Ni/Au was 370gf.

A Study on Solderability of Sn-Ag-Cu Solder with Plated Layers in $\mu-BGA$ ($\mu-BGA$에서 Sn-Ag-Cu 솔더의 도금층에 따른 솔더링성 연구)

  • 신규식;정석원;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.783-788
    • /
    • 2002
  • Sn-Ag-Cu solder is known as most competitive in many kinds of Pb-free solders. In this study, effects of solderability with plated layers such as Cu, Cu/Sn, Cu/Ni and Cu/Ni/Au were investigated. Sn-3.5Ag-0.7Cu solder balls were reflowed in commercial reflow machine (peak temp.:$250^{\circ}C$and conveyer speed:0.6m/min). In wetting test, immersion speed was 5mm/sec., immersion time 5sec., immersion depth 4mm and temperature of solder bath was $250^{\circ}C$. Wettability of Sn-3.5Ag-0.7Cu on Cu, Cu/Sn ($5\mu\textrm{m}$), Cu/Ni ($5\mu\textrm{m}$), and Cu/Ni/Au ($5\mu\textrm{m}/500{\AA}$) layers was investigated. Cu/Ni/Au layer had the best wettability as zero cross time and equilibrium force, and the measured values were 0.93 sec and 7mN, respectively. Surface tension of Sn-3.5Ag-0.7Cu solder turmed out to be 0.52N/m. The thickness of IMC is reduced in the order of Cu, Cu/Sn, Cu/Mi and Cu/Ni/Au coated layer. Shear strength of Cu/Ni, Cu/Sn and Cu was around 560gf but Cu/Ni/Au was 370gf.

Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate (Sn-58Bi 솔더 페이스트와 ENIG 표면 처리된 기판 접합부의 계면 반응 및 접합강도)

  • Shin, Hyun-Pil;Ahn, Byung-Wook;Ahn, Jee-Hyuk;Lee, Jong-Gun;Kim, Kwang-Seok;Kim, Duk-Hyun;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.64-69
    • /
    • 2012
  • Sn-Bi eutectic alloy has been widely used as one of the key solder materials for step soldering at low temperature. The Sn-58Bi solder paste containing chloride flux was adopted to compare with that using the chloride-free flux. The paste was applied on the electroless nickel-immersion gold (ENIG) surface finish by stencil printing, and the reflow process was then performed at $170^{\circ}C$ for 10 min. After reflow, the solder joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 h in an oven. The interfacial microstructures were obtained by using scanning electron microscopy (SEM), and the composition of intermetallic compounds (IMCs) was analyzed using energy dispersive spectrometer (EDS). Two different IMC layers, consisting of $Ni_3Sn_4$ and relatively very thin Sn-Bi-Ni-Au were formed at the solder/surface finish interface, and their thickness increased with increasing aging time. The wettability of solder joints was investigated by wetting balance test. The mechanical property of each aging solder joint was evaluated by the ball shear test in accordance with JEDEC standard (JESD22-B117A). The results show that the highest shear force was measured when the aging time was 100 h, and the fracture mode changed from ductile fracture to brittle fracture with increasing aging time. On the other hand, the chloride flux in the solder paste did not affect the shear force and fracture mode of the solder joints.

Numerical Analysis of Warpage and Stress for 4-layer Stacked FBGA Package (4개의 칩이 적층된 FBGA 패키지의 휨 현상 및 응력 특성에 관한 연구)

  • Kim, Kyoung-Ho;Lee, Hyouk;Jeong, Jin-Wook;Kim, Ju-Hyung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2012
  • Semiconductor packages are increasingly moving toward miniaturization, lighter and multi-functions for mobile application, which requires highly integrated multi-stack package. To meet the industrial demand, the package and silicon chip become thinner, and ultra-thin packages will show serious reliability problems such as warpage, crack and other failures. These problems are mainly caused by the mismatch of various package materials and geometric dimensions. In this study we perform the numerical analysis of the warpage deformation and thermal stress of 4-layer stacked FBGA package after EMC molding and reflow process, respectively. After EMC molding and reflow process, the package exhibits the different warpage characteristics due to the temperature-dependent material properties. Key material properties which affect the warpage of package are investigated such as the elastic moduli and CTEs of EMC and PCB. It is found that CTE of EMC material is the dominant factor which controls the warpage. The results of RSM optimization of the material properties demonstrate that warpage can be reduced by $28{\mu}m$. As the silicon die becomes thinner, the maximum stress of each die is increased. In particular, the stress of the top die is substantially increased at the outer edge of the die. This stress concentration will lead to the failure of the package. Therefore, proper selection of package material and structural design are essential for the ultra-thin die packages.

The Effect of Sputtering Process Variables on the Properties of Pd Alloy Hydrogen Separation Membranes (스퍼터 공정변수가 팔라듐 합금 수소분리막의 특성에 미치는 영향)

  • Han, Jae-Yun;Joo, Sae-Rom;Lee, Jun-Hyong;Park, Dong-Gun;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.248-257
    • /
    • 2013
  • It is generally recognized that thin Pd-Cu alloy films fabricated by sputtering show a wide range of microstructures and properties, both of which are highly dependent on the sputtering conditions. In view of this, the present study aims to investigate the relationship between the performance of hydrogen separation membranes and the microstructure of Pd alloy films depending on sputtering deposition conditions such as substrate temperature, working pressure, and DC power. We fabricated thin and dense Pd-Cu alloy membranes by the micro-polishing of porous Ni support, an advanced Pd-Cu sputtered multi-deposition under the conditions of high substrate temperature / low working pressure / high DC power, and a followed by Cu-reflow heat-treatment. The result of a hydrogen permeation test indicated that the selectivity for $H_2/N_2$ was infinite because of the void-free and dense surface of the Pd alloy membranes, and the hydrogen permeability was 10.5 $ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ for a 6 ${\mu}m$ membrane thickness.

Reliability of High Temperature and Vibration in Sn3.5Ag and Sn0.7Cu Lead-free Solders (Sn3.5Ag와 Sn0.7Cu 무연솔더에 대한 고온 진동 신뢰성 연구)

  • Ko, Yong-Ho;Kim, Taek-Soo;Lee, Young-Kyu;Yoo, Sehoo;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.31-36
    • /
    • 2012
  • In this study, the complex vibration reliability of Sn-3.5Ag and Sn-0.7Cu having a high melting temperature was investigated. For manufacturing of BGA test samples, Sn-3.5Ag and Sn-0.7Cu balls were joined on BGA chips finished by ENIG and the chips were mounted on PCB finished OSP by using reflow process. For measuring of resistance change during complex vibration test, daisy chain was formed in the test board. From the results of resistance change and shear strength change, the reliability of two solder balls was compared and evaluated. During complex vibration for 120 hours, Sn-0.7Cu solder was more stable than Sn-3.5Ag solder in complex vibration test.

Formation of Fine Pitch Solder Bumps on Polytetrafluoroethylene Printed Circuit Board using Dry Film Photoresist (Dry Film Photoresist를 이용한 테프론 PCB 위 미세 피치 솔더 범프 형성)

  • 이정섭;주건모;전덕영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • We have demonstrated the applicability of dry film photoresist (DFR) in photolithography process for fine pitch solder bumping on the polytetrafluoroethylene (PTFE/Teflon ) printed circuit board (PCB). The copper lines were formed with 100$\mu\textrm{m}$ width and 18$\mu\textrm{m}$ thickness on the PTFE test board, and varying the gaps between two copper lines in a range of 100-200$\mu\textrm{m}$. The DFRs of 15$\mu\textrm{m}$ thickness were laminated by hot roll laminator, by varying laminating temperature from $100{\circ}C$ to 15$0^{\circ}C$ and laminating speed from 0.28-0.98cm/s. We have found the optimum process of DFR lamination on PTFE PCB and accomplished the formation of indium solder bumps. The optimum lamination condition was temperature of $150^{\circ}C$ and speed of about 0.63cm/s. And the smallest size of indium solder bump was diameter of 50$\mu\textrm{m}$ with pitch of 100$\mu\textrm{m}$.

  • PDF

COG(chip-on-glass) Mounting Using a Laser Beam Transmitting a Glass Substrate (유리 기판을 투과하는 레이저 빔을 사용한 COG(chip-on-glass) 마운팅 공정)

  • 이종현;문종태;김원용;김용석
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • Chip-on-glass(COG) mounting of area array electronic packages was attempted by heating the rear surface of a contact pad film deposited on a glass substrate. The pads consisted of an adhesion (i.e. Cr or Ti) and a top coating layer(i.e. Ni or Cu) were healed by the UV laser beam transmitted through the glass substrate. The lather energy absorbed on the pad raised the temperature of a solder ball which is in physical contact with the pad, and formed a reflowed solder bump. The effects of the adhesion and top coating layer on the laser reflow soldering were studied by measuring temperature profile of the ball during the laser heating process. The results were discussed based on the measurement of reflectivity of the adhesion layer. In addition, the microstructures of solder bumps and their mechanical properties were examined.

  • PDF