• Title/Summary/Keyword: Reference Voltage Generation

Search Result 69, Processing Time 0.022 seconds

A Clock Generation Scheme for TDM-CDM Converter in Gap Filler for the Satellite DMB Systems (위성 DMB용 중계기(Gap Filler)의 TDM-CDM변환부 클럭 생성 방안 연구)

  • Kim, Chong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.93-97
    • /
    • 2007
  • In this paper a new clock generation scheme for TDM-CDM converter in the Gap Filler for satellite DMB systems has been proposed. The scheme uses the frame sync signal from the Ku band TDM receiver to lock the VCXO which provides the system clock for the TDM-CDM converter. The locking algorithm can be easily implemented in the FPGA, so that no separate circuitry is needed as in conventional PLL. With a stable OCXO, The scheme can be used to generate the reference clock to the local oscillator for RF parts.

Development of a Data Acquisition System for the Testing and Verification of Electrical Power Quality Meters

  • Simic, Milan;Denic, Dragan;Zivanovic, Dragan;Taskovski, Dimitar;Dimcev, Vladimir
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.813-820
    • /
    • 2012
  • This paper presents the development of a software supported acquisition system for metrological verification and testing of the equipment for monitoring and analysis of the basic electrical power quality parameters. The described procedure consists of two functionally connected segments. The first segment involves generation of the reference three-phase voltage signals, including the possibility of simulation of the various power quality disturbances, typical for electrical power distribution networks. The second part of this procedure includes the real-time recording of power quality disturbances in three-phase distribution networks. The procedure is functionally supported by the virtual instrumentation concept, including a software application developed in LabVIEW environment and data acquisition boards NI 6713 and NI 9215A. The software support of this system performs graphical presentation of the previously generated and recorded signal waveforms. A number of the control functions and buttons, implemented on the virtual instrument front panels, are provided to adjust the basic signal acquisition, generation and recording parameters.

A Study on the Design of Binary to Quaternary Converter (2진-4치 변환기 설계에 관한 연구)

  • 한성일;이호경;이종학;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.152-162
    • /
    • 2003
  • In this paper, Binary to Quaternary Converter(BQC), Quaternary to Binary Converter(QBC) and Quaternary inverter circuit, which is the basic logic gate, have been proposed based on voltage mode. The BQC converts the two bit input binary signals to one digit quaternary output signal. The QBC converts the one digit quaternary input signal to two bit binary output signals. And two circuits consist of Down-literal circuit(DLC) and combinational logic block(CLC). In the implementation of quaternary inverter circuit, DLC is used for reference voltage generation and control signal, only switch part is implemented with conventional MOS transistors. The proposed circuits are simulated in 0.35 ${\mu}{\textrm}{m}$ N-well doubly-poly four-metal CMOS technology with a single +3V supply voltage. Simulation results of these circuit show 250MHz sampling rate, 0.6mW power consumption and maintain output voltage level in 0.1V.

Analysis of Harmonic Effects on Substation Power System and its Countermeasure (지하철 전력계통의 고조파 영향 분석 및 그 대책에 관한 연구)

  • Song, Jin-Ho;Hwang, Yu-Mo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.210-220
    • /
    • 2002
  • We analysised the effect of harmonics on electric machines of substation power system barred on quantitatively measured harmonics and proposed the methods for prevention of harmonics through checking on transformer, rectifier and cable's capacities against harmonics with reference to KEPCO's electricity service standard. In order to analysis harmoninics of silicon rectifier that is power source in DC substation, computer simulations for a substation with TR of high voltage distribution switchboard are performed. Simulation results show that the total harmonic distortion factor becomes smaller for TR primary and receiving points in order rather than silicon rectifier which is harmonic generation source so that the harmonics generated frets each rectifier are outflowed to power supply and high voltage distribution switchboard The result of higher distortion factors of voltage and current for rectifier with 100% load than those with 50 % and 30% indicates that the waveform of voltage and current for the real substation power system at the office-going and the closing hours with heavy loads might be more distorted. As proposed methods for harmonic reduction, the conventional 6 pulse-type for substation is required to be replaced by 12 pulse-type for reduction of 5th and 7th harmonics. The active filter rather than the passive filter is more effective due to severe variance of rectifier loads, but the high cost is price to be paid. In view of installation area and costs, the use of 12 pulse-type transformer is desirable and then the parallel transformer and the rectifier within the substation must be replaced at the same time. Other substations with parallel feeder can use 6 pulse-type transformer.

Output Power Control of Wind Generation System by Machine Loss Minimization

  • Abo-Khalil Ahmed;Lee Dong-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.51-54
    • /
    • 2005
  • Generator efficiency optimization is important for economic saving and environmental pollution reduction. In general, the machine loss can be reduced by the decreasing the flux level, resulting in the significant reduction of the core loss. This paper proposesan model-based controller is used to decrement the excitation current component on the basis of measured stator current and machine parameters and the q-axis current component controls the generator torque, by which the speed of the induction generator iscontrolled according to the variation of the wind speed in order to produce the maximum output power. The generator reference speed is adjusted according to the optimum tip-speed ratio. The generated power flows into the utility grid through the back-to-back PWM converter. The grid-side converter controls the dc link voltage and the line-side power factor by the q-axis and the d-axis current control, respectively. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

A Study On the Characteristics of Cascaded PWM Converter for IUT (IT기반 지능형 다기능 변압기용 cascade형 PWM 컨버터의 특성 연구)

  • Ahn, Joonseon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • In this paper, novel PWM generation method for cascaded H-bridge PWM converter is proposed. The proposed method can solve the unvalancing problem between H-bridges which consist cascade PWM converter without any injection of redundancy switching pattern for solving the load of switches forced from voltage reference of controller.

Decoupled Control of Doubly Fed Induction Machine Fed by SVM Matrix Converter

  • Dendouga, Abdelhakim;Abdessemed, Rachid;Bendaas, Mohamed Lokmane
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.491-498
    • /
    • 2008
  • In this paper a decoupled control of a doubly-fed induction machine(DFIM) feed by a matrix converter is presented. It provides a robust regulation of the stator side active and reactive powers by the direct and quadratic components of the stator current vector, presented in a line-voltage-oriented reference frame. In this case, the stator windings are directly connected to the line grid, while the rotor windings are supplied by this later through a matrix converter controlled by a space vector modulation technique. The proposed solution is suitable for both energy generation and electrical drive applications with restricted speed variation range.

Control Strategies for Multilevel APFs Based on the Windowed-FFT and Resonant Controllers

  • Han, Yang
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.509-517
    • /
    • 2012
  • This paper presents control strategies for cascaded H-bridge multilevel active power filters (APFs). A current loop controller is implemented using a proportional-resonant (PR) regulator, which achieves zero steady-state error at target frequencies. The power balancing mechanism for the dc-link capacitor voltages is analyzed and a voltage balancing controller is presented. To mitigate the picket-fence effect of the conventional FFT algorithm under asynchronous sampling conditions, the Hanning Windowed-FFT algorithm is proposed for reference current generation (RCG). This calculates the frequency, amplitude and phase of individual harmonic components accurately and as a result, selective harmonic compensation (SHC) is achieved. Simulation and experimental results are presented, which verify the validity and effectiveness of the devised control algorithms.

Development of advanced Power Factor Computation Algorithm in Harmonics distorted Distribution System (고조파 왜곡 환경에서 향상된 역률 계측 알고리즘 개발)

  • Lee, Hyun-woo;Park, Young-kyun;Lee, Jinhan;Joung, Sanghyun;Park, Chul-woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.121-127
    • /
    • 2016
  • We propose a algorithm to calculate power factor of fundamental waveform in an environment where the voltage and current have been distorted by harmonics. In the proposed power factor computation algorithm, voltage and current are converted to rotating DQ reference frame, and power factor is calculated from active power and reactive power. We compare the proposed method with the conventional power factor measurement method as mathematically. In a condition that voltage and current are distorted by harmonics, the proposed method accurately measure the power factor of fundamental wave, and it is confirmed by simulation using MATLAB. If the proposed power factor measurement method is applied to an automatic power factor control system, a power factor compensation performance can be maximized in harmonic distortion environment. As a result, it is possible to reduce electricity prices, reduce line loss, increase load capacity, ensure the transmission margin capacity, and reduce the amount of power generation.

Phenol Conversion Properties in Aqueous Solution by Pulsed Corona Discharge (펄스 코로나 방전에 의한 액체상 페놀 전환 특성)

  • Lee, Hyun-Don;Chung, Jae-Woo;Cho, Moo-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • A laboratory scale experiment on phenol conversion properties by pulsed corona discharge process was carried out. Effects of operating parameters such as applied voltage, input oxygen, and electrode geometry on phenol conversion and solution properties were investigated. Electrical discharges generated in liquid phase increased the liquid temperature by heat transfer from current flow, decreased the pH value by producing various organic acids from phenol degradation, and increased conductivity by generating charge carriers and organic acids. The oxygen supply enhanced the phenol conversion through the ozone generation dissolution and the production of OH radicals. Series type electrode configuration induced more ozone production than reference type configuration because it produced gas phase discharges as well as liquid phase discharges. Therefore, the higher phenol conversion and TOC(total organic carbon) removal efficiency were obtained in series type configuration.