• Title/Summary/Keyword: Reductant

Search Result 188, Processing Time 0.025 seconds

Determination of osmium using sulfurous acid as reductant by ICP-AES (Sulfurous acid 환원제를 이용한 ICP-AES에 의한 Osmium의 정량 분석)

  • Park, Han-Seok;Kim, Kang-Jin
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.251-254
    • /
    • 2007
  • In this study, a convenient, fast and accurate inductively coupled plasma atomic emission spectrometry (ICP-AES) method has been optimized for the determination of osmium in aqueous solutions. The method makes use of the reaction of sulfurous acid with osmium to quantitative conversion of volatile Os(VIII) to non-volatile Os(IV) in the pH range 2-10. The response was found to be stabilized immediately after sulfurous acid reacted with osmium. The precision was calculated to be 0.5-4.5 % (RSD) under various ICP-AES conditions. The detection limit was 2.5-57.7 ng/g based on $3{\sigma}$ of the blank response (n=3) using a concentric flow nebulization.

The Effect of CO in the Flue Gas on $H_2$ SCR (배가스 중 CO가 $H_2$ SCR 반응에 미치는 영향 연구)

  • Kim, Sung-Su;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • This study presents the effect of CO in flue gas on the $H_2$ SCR by Pt/$TiO_2$ catalyst. Coexisting CO which has characteristics of competitive adsorption with $H_2$ as a reductant on the active sites showed the decrease of catalytic activity. Competitive adsorption with NO, CO and $H_2$ also caused the reduction of activity and $H_2$, CO slip simultaneously. With increasing the inlet CO concentration, such phenomenon became more pronounced. Adding $PdO_2$ and $CeO_2$ on the catalyst to avoid the inhibition by coexisting CO, $CeO_2$ added catalyst exhibited the durability against CO which fed 100 ppm under.

Effect of Hydrocarbon Additives on SNCR DeNOx Characteristics under Oxidizing Diesel Exhaust Gas Conditions

  • Nam, Changmo
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.809-820
    • /
    • 2018
  • DeNOx experiments for the effects of hydrocarbon additives on diesel SNCR process were conducted under oxidizing diesel exhaust conditions. A diesel-fueled combustion system was set up to simulate the actual cylinder and head, exhaust pipe and combustion products, where the reducing agent $NH_3$ and $C_2H_6/diesel$ fuel additives were separately or simultaneously injected into the exhaust pipe, used as the SNCR flow reactor. A wide range of air/fuel ratios (A/F=20~40) were maintained, based on engine speeds where an initial NOx level was 530 ppm and the molar ratios (${\beta}=NH_3/NOx$) ranged between 1.0~2.0, together with adjusting the amounts of hydrocarbon additives. Temperature windows were normally formed in the range of 1200~1350K, which were shifted downwards by 50~100K with injecting $C_2H_6/diesel$ fuel additives. About 50~68% NOx reduction was possible with the above molar ratios (${\beta}$) at the optimum flow #1 ($T_{in}=1260K$). Injecting a small amount of $C_2H_6$ or diesel fuel (${\gamma}=hydrocarbon/NOx$) gave the promising results, particularly in the lower exhaust temperatures, by contributing to the sufficient production of active radicals ($OH/O/HO_2/H$) for NOx reduction. Unfortunately, the addition of hydrocarbons increased the concentrations of byproducts such as CO, UHC, $N_2O$ and $NO_2$, and their emission levels are discussed. Among them, Injecting diesel fuel together with the primary reductant seems to be more encouraging for practical reason and could be suggested as an alternative SNCR DeNOx strategy under diesel exhaust systems, following further optimization of chemicals used for lower emission levels of byproducts.

An Experimental Study on $NO_x$ Reduction Efficiency and $NH_3$ Conversion Efficiency under Various Conditions of Reductant Injection on SCR and AOC (SCR 촉매와 AOC 촉매에서 환원제 분사에 따른 $NO_x$ 저감효율과 $NH_3$ 변환효율에 관한 실험적 연구)

  • Dong, Yoon-Hee;Choi, Jung-Hwang;Cho, Yong-Seok;Lee, Seang-Wock;Lee, Seong-Ho;Oh, Sang-Ki;Park, Hyun-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.85-90
    • /
    • 2010
  • As the environmental regulation of vehicle emission is strengthened, investigations for $NO_x$ and PM reduction strategies are popularly conducted. Two current available technologies for continuous $NO_x$ reduction onboard diesel vehicles are Selective Catalytic Reduction (SCR) using aqueous urea and lean $NO_x$ trap (LNT) catalysts. The experiments were conducted to investigate the $NO_x$ reduction performance of SCR system which can control the ratio of $NO/NO_2$, temperature and SV(space velocity), and the model gas was used which is similar to a diesel exhaust gas. The maximum reduction efficiency is indicated when the $NO:NO_2$ ratio is 1:1 and the SV is 30,000 $h^{-1}$ in $300^{\circ}C$. Generally, ammonia slip from SCR reactors are rooted to incomplete conversion of $NH_3$ over the SCR. In this research, slip was occurred in 6cases (except low SV and $NO:NO_2$ ratio is 1:1) after SCR. Among 6 case of slip occurrence, the maximum conversion efficiency is observed when SV is 60,000 $h^{-1}$ in $400^{\circ}C$.

Determination of Mercury in Fly Ash by Using Flow Injection Cold Vapor Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

  • Suh, Jung-Ki;Min, Hyung-Sik;Kamruzzaman, Mohammad;Lee, Sang-Hak
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.58-61
    • /
    • 2012
  • A method based on flow injection-isotope dilution-cold vapor-inductively coupled plasma mass spectrometry (FI-IDCV-ICP/MS) has been applied to determine trace level of mercury in fly ash. $^{200}Hg$ isotopic spike was added to 0.25 g of BCR176R fly ash and then decomposed by microwave digestion procedure with acid mixture A (8 mL $HNO_3$ + 2 mL HCl + 2 mL HF) and acid mixture B (8 mL $HNO_3$ + 2 mL $HClO_4$ + 2 mL HF) for applying IDMS. Mercury cold vapor was generated by using reductant solution of 0.2% (w/w) $NaBH_4$ and 0.05% (w/w) NaOH. The measurements of n($^{200}Hg$)/n($^{202}Hg$) isotope ratio was made using a quadrupole ICP/MS system. The accuracy in this method was verified by the analysis of certified reference material (CRM) of fly ash (BCR 176R). The indicative value of Hg in BCR 176R fly ash was $1.60{\pm}0.23$ mg/kg (k = 2). The determined values of Hg in BCR 176R fly ash by the method of FI-CV-ID-ICP/MS described in this paper were $1.60{\pm}0.24$ mg/kg (k = 3.18) and the analysis results were in well agreement with the indicative value within the range of uncertainty.

The Study of Development of permanent wave for Additives of Collagen (콜라겐을 첨가한 퍼머넌트웨이브제의 개발)

  • Lee, Ha-Na;Cho, Hee-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3277-3283
    • /
    • 2010
  • In this study, in order to find effects of collagen manipulation on hair in permanent wave treatment, it was conducted measurement and analysis on hair curl formation, thickness, tensile strength, methylene blue absorbance, and moisture loss after manipulating concentration proportion of collagen in permanent wave treatment on normal hair. As a result, it was found that by contrast with applying the reductant, hair thickness, tensile strength, methylene blue absorbance, and moisture loss were decreased when applied collagen in permanent wave treatment the higher concentration proportion of collagen was applied, the less damage was occurred on hair However curl formation capacity was decreased in permanent wave treatment as concentration proportion of collagen was increased. Therefore, the appropriate concentration proportion of collagen was 2% in order to reduce hair damage in permanent wave treatment.

Performance Evaluation for Fast Conversion from Urea to an Ammonia Conversion Technology with a Plasma Burner (플라즈마 버너를 적용한 요소수에서 암모니아로의 고속 전환 기술 성능 평가)

  • Jo, Sungkwon;Kim, Kwan-Tae;Lee, Dae Hoon;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.526-535
    • /
    • 2016
  • Recently, fine dust in atmosphere have been considerably issued as a harmful element for human. Nitrogen oxide ($NO_x$) exhausted from diesel engines and power plants has been disclosed as a main source of secondary production of fine dust. In order to prevent exhausting these nitrogenous compounds into atmosphere, a treatment system with selective catalytic reduction (SCR) catalyst with ammonia as a reductant has been used in various industries. Urea solution has been widely studied to supply ammonia into a SCR catalytic reactor, safely. However, the conversion of urea solution to ammonia has several challenges, especially on a slow conversion velocity. In the present study, a fast urea conversion system including a plasma burner was suggested and designed to evaluate the performances of urea conversion and initial operation time. A designed lab-scale facility has a plasma burner, urea nozzle, mixer, and SCR catalyst which is for hydrolysis of isocyane. Flow rate of methane that is a fuel of the plasma burner was varied to control temperatures in the urea conversion facility. From experimental results, it is found that urea can be converted into ammonia using high temperature condition of above $400^{\circ}C$. In the designed test facility, it is found that ammonia can be produced within 1 min from urea injection and the result shows prospect commercialization of proposed technology in the SCR facilities.

Experimental Investigation on DeNOx Performance according to the Urea-SCR System Control at Various Operating Conditions for Diesel Engines (디젤엔진의 운전조건 변화 및 Urea-SCR 시스템 제어에 따른 DeNOx 성능에 대한 실험적 연구)

  • Han, Jung-Won;Gong, Ho-Jeong;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-83
    • /
    • 2010
  • Recently, as the current and future emission regulations go stringent, the research of NOx reduction has become a subject of increasing interest and attention in diesel engine. Selective Catalytic Reduction (SCR) is one of the effective technology to reduce NOx emission from diesel engine. Especially, Urea-SCR that uses urea as a reductant is becoming increasingly popular as a cost effective way of reducing NOx emissions from heavy duty vehicles. In this research, we designed urea injector and DCU (Dosing Control Unit) specially developed for controlling the Urea-SCR process onboard vehicles. As passenger and commercial diesel engine experiment, we grasped characteristics of NOx emission and SCR catalyst temperature level in advance. As a result, highest NOx emission level was shown in condition of low engine speed and high load. On the other hand, SCR catalyst temperature was highest at high engine speed and load. On the basis of these result, we conducted the NOx reduction test at steady engine operating conditions using the urea injector and DCU. It was shown that 74% NOx conversion efficiency on the average and 97% NOx conversion efficiency was obtained at high SCR catalyst temperature.

Effect of Fluoride Ion in the Analysis of Tin by HG-ICP-AES (HG-ICP-AES법에 의한 Tin 분석시 플루오르화 이온의 영향에 대한 연구)

  • Lim, Heon-Sung;Cho, Sung-Il;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.416-421
    • /
    • 2001
  • The optimization of the reductant and acid concentration for stannane($SnH_4$) generation was investigated by using a continuous flow hydride generator combined with an inductively coupled plasma-atomic emission spectrometer. Several different prereductants were studied to remove the interfering effect of fluoride ion on the hydride generating of tin. The optimum acid concentration was 0.5-1.0 M for the 1-2% $NaBH_4$ and 1.0 M NaOH and the interfering effect of fluoride ion was minimized using boric acid and L-cysteine mixed solution as a prereductant. The reconveries of tin at 20 ng/mL level in the solution containing fluoride ion were 100~108 %.

  • PDF

Characteristics of Disc-Type V2O5 Catalyst Impregnated Ceramic Filters for NOx Removal (질소산화물 제거를 위한 디스크형 바나디아 촉매담지 세라믹필터의 특성)

  • 홍민선;문수호;이재춘;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2004
  • The performance of disk-type catalytic filters impregnated by TiO$_2$ or TiO$_2$-3Al$_2$O$_3$ㆍ 2SiO$_2$ supports and V$_2$O$_{5}$ catalyst was evaluated for selective catalytic reduction (SCR) of NO with ammonia as a reductant. XRD, FT -IR, BET and SEM were used to characterize the catalytic filters prepared in this work. Optimal V$_2$O$_{5}$ loading and reaction temperature for V$_2$O$_{5}$/TiO$_2$ catalytic filters were 3-6 wt.% and 350-40$0^{\circ}C$ at GHSV 14,300 $hr^{-1}$ in the presence of oxygen, respectively. With increasing the V$_2$O$_{5}$ loading from 0.5 to 6 wt%, NO conversion increased from 24 to 96% at 40$0^{\circ}C$ and 14.300$hr^{-1}$, and maintained at 80% over in the V$_2$O$_{5}$ loading range of 3-6 wt.% and then dropped at V$_2$O$_{5}$ loading of 7wt.% over. In comparing V$_2$O$_{5}$/ TiO$_2$ and V$_2$O$_{5}$/ TiO$_2$-3Al$_2$O$_3$ㆍ2SiO$_2$ catalytic fillers, which have same 3wt.% V$_2$O$_{5}$ loading, the V$_2$O$_{5}$/ TiO$_2$-3A1$_2$O$_3$ㆍ2SiO$_2$ catalytic filter showed higher activity than V$_2$O$_{5}$/ TiO$_2$ catalytic filter, but higher differential pressure drops owing to its low air permeability. low air permeability.